Hakowanie satelitów

Współczesne, sztuczne satelity Ziemi można postrzegać jako wyspecjalizowane komputery, przetwarzające informacje i komunikujące się ze stacjami naziemnymi lub innymi satelitami. Z tego punktu widzenia, rysuje się ich podobieństwo do serwerów, będących częstym celem cyberataków. Z uwagi na duży koszt budowy i umieszczenia na orbicie satelitów, oraz ich nierzadko strategiczne przeznaczenie, również one mogą stać się celem hakerów. Motywacje do podejmowania prób takich ataków mogą być różne, wliczając chęć przejęcia satelity w celu otrzymania okupu, czy też działania dywersyjne. Sytuacje takie nie są jedynie hipotetyczne, lecz zostały już odnotowane w przeszłości. Publicznie dostępna lista cyber-incydentów z udziałem satelitów jest już całkiem spora a przypuszczalna faktyczna skala tego procederu jest znacznie szersza [1, 2]. Biorąc pod uwagę obecny dynamiczny rozwój technologii satelitarnych, w szczególności, związany z budową konstelacji satelitarnych dostarczających internet, spodziewać się można narastania tego problemu. Dlatego też, warto temu zagadnieniu poświęcić należytą uwagę. Niniejszy tekst ma na celu zarysowanie zagadnienia cyberbezpieczeństwa rozwiązań satelitarnych i sprowokowanie Czytelnika do dalszych, pogłębionych, studiów w tym obszarze.

Mogłoby się wydawać, że uzyskanie nieautoryzowanego dostępu do systemu operacyjnego satelity, krążącego na wysokości kilkuset kilometrów nad powierzchnią Ziemi, jest zadaniem praktycznie niewykonalnym. Przekonanie takie ma swoje uzasadnienie w tym, iż informacje związane zarówno z systemami samych satelitów, jak i ze sposobami ich komunikacji, zazwyczaj pozostają niedostępne. Jest to klasyczny przykład tzw. security by obscurity (bezpieczeństwa przez niejawność). To, z jednej strony, ma na celu zniechęcenie do podejmowania jakichkolwiek prób ataków. Z drugiej jednak strony, podejście takie może uśpić czujność osób stojących na straży bezpieczeństwa systemów satelitarnych. Biorąc zaś pod uwagę dynamikę wzrostu ilości umieszczanych na orbicie okołoziemskiej satelitów, możliwości wystąpienia błędów i luk w systemach zabezpieczeń nie można wykluczyć. Chętnych do lokalizacji tych podatności  i ich późniejszego wykorzystania może być wielu. 

Jednym ze sposobów wykrywania słabości zabezpieczeń jest przekonanie tak zwanych “etycznych hakerów” do tego by zechcieli ich poszukać – inaczej mówiąc, włamać się do danego satelity. Działania takie mogą przyjąć formę otwartego konkursu z motywacją (oprócz satysfakcji) w postaci pokaźnej nagrody pieniężnej. W maju ubiegłego roku konkurs taki, pod nazwą Space Security Challenge 2020: HACK-A-SAT, został zorganizowany przez Siły Powietrzne Stanów Zjednoczonych (United States Air force – USAF), wraz z Służbą Obrony Cyfrowej (Defense Digital Service – DDS). Celem rywalizacji było m.in. przywrócenie kontroli nad satelitą, na który przeprowadzono symulowany cyberatak. W konkursie wykorzystano eksperymentalne konstrukcje satelitarne, znajdujące się na Ziemi. Jednakże, najepszym drużynom, udostępniony został również w pełni profesjonalny satelita orbitujący Ziemię. Do konkursu przystąpiło ponad tysiąc drużyn z całego świata. Tym bardziej, godne uznania jest zajęcie drugiego miejsca w tym konkursie przez drużynę “Poland Can Into Space” z Polski.

Należy podkreślić, że przeprowadzenie ataków na systemy satelitarne nie musi wiązać się z użyciem kosztownego sprzętu, co zaś znacząco rozszerza grono potencjalnych atakujących. W szczególności, hakerzy nie muszą być wyposażeni w zaawansowane urządzenia telekomunikacyjne. Celem ataków mogą być bowiem nie koniecznie bezpośrednio same satelity, lecz autoryzowane stacje naziemne, za pośrednictwem których są one kontrolowane. Obejście zabezpieczeń takich stacji może pozwolić na nawiązanie pożądanego połączenia z komputerem satelity i wpłynięcie na jego funkcjonowanie.

W ten sposób, atakujący mogą osiągnąć jeden z wielu możliwych celów, takich jaki np.: 

  • Zainfekowanie komputera satelity złośliwym oprogramowaniem, co może mieć na celu zaburzenie jego pracy. Na przykład, powodując zafałszowanie informacji i wprowadzanie operatora satelity w błąd (również, w sposób trudny do wykrycia). 
  • Zebranie wrażliwych lub cennych informacji. Na przykład, pozyskiwanie danych obrazowych lub sygnałowych. 
  • Szantaż, czy też atak typu ransomware, mający na celu otrzymanie okupu za przywrócenie satelity do działania. Jest to szczególnie kusząca możliwość, z uwagi na typowo ogromne koszty rozwiązań satelitarnych. 

Ataki na systemy satelitarne, wykorzystujące podatności stacji naziemnych, są jednak zasadniczo trudne do przeprowadzenia. Wynika to z zastosowania silnych zabezpieczeń w tego typu obiektach. W takiej sytuacji, łatwiejszym celem może okazać się próba ataku bezpośredniego. Uzasadnione jest to tym, że szyfrowanie kanału komunikacji pomiędzy satelitą a stacją naziemną może być stosunkowo słabe. Związane to jest z ograniczeniami na przepustowość wykorzystywanych łączy radiowych oraz kosztem energetycznym transmisji, co zaś wyklucza stosowanie silnych algorytmów szyfrujących. Przykładem tego jest chociażby wykazana możliwość kryptoanalizy algorytmów GMR-1 i GMR-2, stosowanych w telefonii satelitarnej [3]. Ponadto, ograniczenia na rozwiązania kryptograficzne są narzucane przez rozmiary pakietów danych wymienianych radiowo w trakcie przelotu satelity nad stacją naziemną (co nie dotyczy satelitów geostacjonarnych). Te więzy czasowe, wymuszają stosowanie kompromisowych rozwiązań, biorąc z jednej strony ilość przesyłanych danych użytkowych a z drugiej bezpieczeństwo tych danych.  

Wykorzystanie podatności otwierających się poprzez bezpośrednie nawiązanie łączności z satelitą urealnione jest przez dostępność i stosunkowo niski koszt niezbędnego sprzętu. W wielu przypadkach, wystarczy do tego celu antena paraboliczna o średnicy około dwóch metrów i układ nadawczo-odbiorczy, zamykające się w kwocie kilkunastu tysięcy złotych. Już takie wyposażenie może pozwolić na podszycie się pod autoryzowaną stację nadawczą (tzw. spoofing) i nawiązanie komunikacji z satelitą. A stąd już krok do zainfekowania systemu operacyjnego satelity, lub przejęcia nad nim kontroli.  

Przedmiotem zainteresowania hakerów mogą być także same dane przesyłane z satelitów. Odbieranie takich danych nie wymaga zaś nawiązania dwukierunkowej komunikacji z satelitą. Wystarczyć więc może nawet zwykły tuner i antena satelitarna. Większość z przesyłanych na ziemię danych jest jednak zaszyfrowana. Dotyczy to również telewizji satelitarnej. Z kosmosu trafia do nas jednak cała masa, innych, dużo bardziej wrażliwych danych, takich jak np. rozmowy prowadzone za pomocą telefonów satelitarnych, czy też dane przemysłowe. Za sprawą powstającego globalnego internetu satelitarnego, danych tych będzie znacząco przybywać. To też rodzi obawy, że będą one mogły zostać przechwycone i bezprawnie wykorzystywane (jeśli nie zostaną wystarczająco silnie zabezpieczone).  Przykładu takiej możliwości dostarcza wykazana niedawno podatność, zainstalowanych na statkach, satelitarnych systemów VSAT (Very Small Aperture Terminals) [4].

Na styku cyberataków i ataków fizycznych znajdują się również ataki typu DoS (Denial-of-Service), polegające na zablokowaniu danej usługi, na przykład poprzez zawieszenie witryny internetowej. Stosowaną często wersją takiego ataku jest DDoS (Distributed Denial-of-Service), w którym wykorzystuje się masowo zainfekowane komputery do połączenia z danym serwerem w celu jego przeciążenia i w konsekwencji zawieszenia. 

Za satelitarny odpowiednik ataku DoS możemy uznać zakłócenie pracy satelity (tzw. jamming). Zakłócany może być zarówno tzw. downlink (komunikacja z satelity na ziemię) oraz tzw. uplink (komunikacja z ziemi do satelity). Zakłócenie radioelektroniczne można przeprowadzić za pomocą naziemnej stacji radiowej, lub też dedykowanego do tego celu satelity. O ile ta druga możliwość dana jest nielicznym, to już ataki typu DoS z powierzchni Ziemi można realizować w oparciu o stosunkowo nieduże zasoby sprzętowe.  

Jednymi z najpowszechniejszych przypadków ataków na satelitarną usługę w transmisji downlink są zakłócenia pracy systemów nawigacji satelitarnej (GNSS), takich jak GPS czy Galileo, oraz telewizji satelitarnej.  Zakłócenia systemów GNSS mogą uniemożliwić z korzystania z nawigacji satelitarnej w danym obszarze jego stosowania. Ataki tego mają miejsce dosyć często, o czym świadczą udokumentowane przypadki [2]. Licznych przykładów takich działań dostarcza raport “Above Us Only Stars – Exposing GPS Spoofing in Russia and Syria,” (pdf) przygotowany przez ośrodek C4ADS. Raport przytacza również przykładów spoofingu GPS (czyli podszywania się pod system GPS), co może być działaniem jeszcze bardziej niebezpiecznym, gdyż nieświadomy użytkownik może zostać wprowadzony w błąd a jego pojazd (samochód, statek, samolot) może być skierowany np. na kurs kolizyjny z przeszkodą. Sposobem radzenia sobie z takimi sytuacjami jest m.in. kryptograficzne uwierzytelnienie źródeł sygnału.

Warto dodać, że z uwagi na dominujące znaczenie transmisji internetowej, zakłócenie telewizji satelitarnej traci obecnie na znaczeniu. Działania takie miały jednak miejsce w przeszłości. Udokumentowanym incydentem tego typu było np. zakłócenie kurdyjskiego kanału satelitarnego MED-TV w 1995 roku [2].   

Podsumowując, cyberataki na systemy satelitarne są realnym zagrożeniem, a ich znaczenie będzie wzrastało, wraz z rozwojem internetu satelitarnego (dostarczanego z niskiej orbity okołoziemskiej) oraz innych usług satelitarnych. Na szczególną uwagę i monitorowanie od strony cyberbezpieczeństwa zasługuje tu konstelacja Starlink, budowana obecnie przez firmę SpaceX. 

Konstelacji satelitów Starlink (stan na styczeń 2021). Interaktywna mapa pod adresem: https://satellitemap.space/

Jednym z obiecujących kierunków, który może zmniejszyć ryzyko bezpośrednich ataków na satelity, jest zastąpienie komunikacji radiowej, łącznością laserową. Łączność laserowa wdrażana jest już m.in. w komunikacji międzysatelitarnej w konstelacji Starlink (ale nie w komunikacji ze stacjami naziemnymi). Wykorzystanie satelitarnych łączy optycznych jest obecnie bardzo ważnym kierunkiem rozwoju. Wynika to zarówno, z dużo większych przepustowości, jak i mniejszych strat energetycznych, w przypadku łączy laserowych. Zaletą, w stosunku do komunikacji radiowej, jest także dużo mniejsza podatność na przechwycenie komunikacji, wynikająca z małego kąta rozbieżności wiązki laserowej. Własność ta stanowi zasadniczą trudność przy próbach cyberataków na systemy satelitarne. Równocześnie, wysokie przepustowości łączy optycznych pozwalają na stosowanie silnych algorytmów kryptograficznych, w tym algorytmów kryptografii postkwantowej. Łącza optyczne nie są jednak wolne od słabości. Największym ich wrogiem są czynniki atmosferyczne, takie jak chmury, które są zdolne do tego by skutecznie przeprowadzić atak DoS.

Bibliografia

  1. D. Housen-Couriel, Cybersecurity threats to satellite communications: Towards a typology of state actor responses, Acta Astronautica 128,  409-415 (2016). 
  2. A. Ali.Zare Hudaib,  Satellite Network Hacking & Security Analysis, International Journal of Computer Science and Security (IJCSS) 10, Issue (1),  8-55 (2016).
  3. B. Driessen, R. Hund, C. Willems, C. Paar, & T. Holz, Don’t Trust Satellite Phones: A Security Analysis of Two Satphone StandardsIEEE Symposium on Security and Privacy, 128-142 (2012).
  4.  J. Pavur, I. Martinovic, M. Strohmeier, V. Lenders, & D. Moser, A tale of sea and sky: On the security of maritime VSAT communications, IEEE, 1006–1022 (2020).

© Jakub Mielczarek

Artykuł został opublikowany na portalu Polish Brief.

Splątanie kwantowe w nanosatelicie

Udało się zrealizować kolejny ważny krok w kierunku wykorzystania przestrzeni kosmicznej do prowadzenia komunikacji kwantowej oraz do badań nad zjawiskami kwantowymi w warunkach mikrograwitacji. Stało się to za sprawą nanaosatelity SpooQy-1, który zrealizował eksperyment demonstrujący splątanie kwantowe fotonów w warunkach kosmicznych [1]. Misja została przeprowadzona przez Centrum Technologii Kwantowych w Singapurze, we współpracy z partnerami ze Szwajcarii, Australii i Wielkiej Brytanii.

Pierwsze eksperymenty satelitarne z wykorzystaniem splątanych stanów fotonów zostały zrealizowane w ostatnich latach przez chińskiego satelitę średniego typu o nazwie Micius [2]. Jednakże, dopiero teraz udało się przeprowadzić eksperyment ze splątanymi stanami kwantowymi fotonów z wykorzystaniem miniaturowego nanosatelity typu CubeSat. W standardzie tym, nanosatelity budowane są z jednostek (unitów) w postaci sześcianów o długości krawędzi równej 10 cm. Pojedynczą kostkę określamy jako 1U – jedna jednostka. Nanosatelita SpooQy-1 zbudowany został z trzech jednostek (3U), przy czym, systemy sterowania, łączności i zasilania zamknięto w jednym z nich (1U), eksperyment kwantowy zajmował zaś pozostałe dwa bloki (2U).

Misja SpooQy-1 powstała na bazie wcześniejszego projektu nanosatelitarnego Galassia (2U), który w 2016 roku wykonał orbitalne testy układu do generowania splątanych stanów kwantowych kwantowych [3]. W ramach tej misji nie udało się jednak dokonać pomiarów samego splątania kwantowego. Z uwagi na stosunkowo niskie koszty zarówno budowy jak i umieszczania na niskiej orbicie okołoziemskiej CubseSatów, przeprowadzone misje torują drogę do realizacji kolejnych nanosatelitarnych projektów kwantowych przez mniejsze grupy naukowców i inżynierów.

SpooQy-deployment
Wypuszczenie nanosatelity SpooQy-1 z Międzynarodowej Stacji Kosmicznej. Źródło

Żeby zrozumieć znaczenie przeprowadzonego na pokładzie nanosatelity SpooQy-1 eksperymentu, warto przybliżyć (lub jedynie odświeżyć) to co rozumiemy przez splątanie kwantowe.   W tym celu, rozważmy foton, czyli podstawową porcję (kwant) pola elektromagnetycznego. Fotony, oprócz odpowiadającej im długości fali, czy też zbioru długości fali składających się na tak zwaną paczkę falową, posiadają również dwa wewnętrzne stopnie swobody związane z ich polaryzacją.  Wypadkowa polaryzacja fotonu ma postać kwantowej superpozycji dwóch stanów bazowych polaryzacji. Jako stany bazowe możemy wybrać przykładowo dwie prostopadłe względem siebie polaryzacje – poziomą (H – horizontal) oraz pionową (V – vertical). Kierunki polaryzacji są ustalone względem referencyjnego układu odniesienia, takiego jaki wyznacza chociażby płaszczyzna stołu optycznego.

Fotony możemy przygotować w stanach o pożądanej polaryzacji liniowej przepuszczając je przez polaryzator.  Jeśli będzie on ustawiony np. w pozycji H, to foton o początkowej dowolnej polaryzacji, po przejściu przez taki polaryzator znajdzie się stanie H. Ciekawą sytuacją jest, kiedy pozycja polaryzatora nie będzie pokrywała się z jedną z pozycji bazowych H i V, leczy np. będzie względem każdej z nich obrócona o 45 stopni. Odpowiada to polaryzacjom diagonalnej (D – diagonal) oraz antydiagonalnej (A – anti-diagonal). Wtedy to, analizując np. fotonu w stanie o polaryzacji D za pomocą analizatora złożonego z polaryzatorów ustawionych w pozycjach H i V, zaobserwujemy tak zwaną redukcji stanu kwantowego. Statystycznie, przepuszczając przez analizator pewną liczną fotonów przygotowanych w stanie D, połowę z nich zarejestrujemy jako będące w stanie H, a połowę w stanie V. Stan o polaryzacji D możemy więc uznać za superpozycję kwantową stanów bazowych H i V, z jednakowym rozkładem prawdopodobieństw równym 1/2. W trakcie aktu pomiaru, jakim jest analiza polaryzacji, stan ten redukuje się do jednego ze stanów bazowych (H,V) i pozostaje w nim.

Przejście od koncepcji superpozycji kwantowej do splątania kwantowego wymaga rozszerzenia powyższej dyskusji do przypadku stanu kwantowego dwóch lub więcej fotonów.  Do wyjaśnienia eksperymentu przeprowadzonego w misji SpooQy-1, wystarczy nam rozważanie splątania kwantowego dwóch fotonów. Tym bardziej, że jest to sytuacja najpowszechniejsza, a wytwarzanie stanów splątanych trzech i większej liczby fotonów jest wciąż raczkującym obszarem doświadczalnej optyki kwantowej.

Splątanie kwantowe jest szczególnym typem superpozycji kwantowej w układzie cząstek, takich jak fotony, prowadzące do występowania nielokalnych korelacji pomiędzy nimi.  Stanami dwufotonowymi, w których możemy zaobserwować splątanie kwantowe są w szczególności stany Bella: Φ+, Φ-, Ψ+ i Ψ-.  Stany te są szczególnie interesujące z tego powodu, że należą do przypadku w którym splątanie kwantowe jest najsilniejsze (mówimy, że są to stany maksymalnie splątane).

Przyjrzyjmy się teraz bliższej przypadkowi fotonów przygotowanych w stanie Φ+, co przedstawia rysunek poniżej. Fotony takie, wyemitowane ze źródła stanu splątanego, propagują się następnie do odległych punktów A i B, w których następuje pomiar. Podobnie jak w omawianym powyżej przypadku pojedynczego fotonu, a priori możemy z równym prawdopodobieństwem oczekiwać zarejestrowania każdego z fotonów w stanie o jednej z dwóch polaryzacji: H lub V. W tym momencie dochodzimy jednak do jednej z  najbardziej enigmatycznych własności mechaniki kwantowej. Mianowicie, jeśli dokonamy analizy polaryzacji jednego z fotonów, to będzie to miało natychmiastowy wpływ na wynik pomiaru przeprowadzonego na tym drugim. Jeśli np. w wyniku pomiaru okaże się, że foton w punkcie A jest stanie o polaryzacji H, to ze stuprocentową pewnością, analizując drugi foton w punkcie B, zaobserwujemy, że znajduje się on również w stanie H. Natomiast, jeśli nie dokonalibyśmy pomiaru w punkcie A, to wynik pomiaru w punkcie B wynosiłby w 50% przypadków H i w 50% przypadków V. Ta natychmiastowa redukcja stanu kwantowego,  odbiegająca od tak zwanego lokalnego realizmu, okazała się trudna do zaakceptowania przez wielu fizyków, co znalazło ucieleśnienie między innymi w paradoksie EPR (Einsteina-Podolskiego-Rosena). Przypuszczano, że mogą istnieć pewne dodatkowe (nieobserwowane) stopnie swobody, tak zwane zmienne ukryte,  znajomość których pozwoliłaby przewidzieć wyniki pomiarów i uniknąć konieczności natychmiastowej redukcji stanu kwantowego pomiędzy odległymi punktami.  Możliwość występowania zmiennych ukrytych, przynajmniej tych lokalnego typu, wyeliminował ostatecznie w latach sześćdziesiątych ubiegłego wieku północnoirlandzki fizyk John Bell, ten sam od którego nazwiska pochodzi wprowadzona powyżej rodzina stanów kwantowych.

Bell
Schemat eksperymentu Bella ze splątaniem kwantowym. Źródło

Rozważając korelacje pomiędzy wynikami pomiarów w punktach A, B wykazał on, że hipoteza zmiennych ukrytych wymaga spełnienia określonej nierówności pomiędzy wynikami pomiarów w różnych bazach. W celu wprowadzenia tej nierówności, oznaczmy wyniki pomiarów w bazie (H,V) w punktach A i B odpowiednio a i b. Natomiast, dla alternatywnego wyboru bazy, np. (D,A), niech wyniki pomiarów  w punktach A i B wynoszą a’ i b’. Korzystając z tych oznaczeń, możemy rozważań cztery różne konfiguracje dla funkcji korelacji, E(a,b), E(a’,b), E(a,b’) i E(a’,b’),  które pozwalają nam zdefiniować wielkość:

S =  E(a,b) – E(a,b’) + E(a’,b) + E(a’,b’),

zwaną parametrem CHSH (Clauser-Horne-Shimony-Holt).  Jak wykazał Bell, teoria lokalnych zmiennych ukrytych wymaga, żeby parametr ten spełnia następującą nierówność (zwana nierównością Bella, lub też nierównością Bella-CHSH):

|S|≤ 2.

Okazuje się jednak, że stany splątane takie jak rozważane tu stany Bella, jawnie łamią tę nierówność, przecząc lokalnemu realizmowi.

Wynik ten wspiera postrzeganie mechanik kwantowej jako teorii w pewnym stopniu nielokalnej. Mianowicie, stan splątany dwóch cząstek kwantowych traktujemy jako jeden obiekt kwantowy i niezależnie od tego czy jedna jego część znajduje się w dużej odległości od drugiej, ingerencja w tą pierwszą poniesie za sobą natychmiastowy skutek dla tej drugiej i vice versa. Jednakże, wbrew pierwotnym obawom, wyrażonym w paradoksie EPR, nie jest w ten sposób możliwa nadświetlna wymiana informacji. Pomimo, że splątanie kwantowe nie pozwala urzeczywistnić wizji znanych chociażby z serialu Star Trek, znajduje ono zastosowanie w komunikacji. Ma to miejsce za sprawą zarówno możliwości przeprowadzania za jej pośrednictwem tak zwanej teleportacji stanów kwantowych jak i kwantowej dystrybucji klucza. Oba te procesy zachodzą z prędkością światła w danym ośrodku, która jest mniejsza lub równa prędkości światła w próżni.

To drugie zastosowanie, czyli kwantowa dystrybucja, stanowiąca jeden z głównych filarów kryptografii kwantowej,  przyciąga szczególnie duże zainteresowanie i stanowiła jedną z głównych motywacji do przeprowadzenia misji SpooQy-1. Wytworzone stany Bella pozwalają m.in. na realizację protokołu Ekerta (E91) kwantowej dystrybucji klucza [4]. W podejściu tym, zaufana jednostka (na przykład nanosatelita) wytwarza pary splątanych fotonów, wysyłając jeden z nich do punku A a drugi do punktu B. Analizując otrzymane fotony, można otrzymać ciągi wyników pomiaru polaryzacji, np. HVHHVHVHV…. Przypisując zaś stanom polaryzacji wartości binarne np. H->0 i V->1, otrzymujemy ciąg bitów 010010101…, który może stanowić sekretny klucz, stosowany w protokołach klasycznej kryptografii symetrycznej. Przygotowując fotony np. w stanie Φ+, mamy pewność, że jeśli odbiorca A zarejestrował ciąg  010010101…, to taki sam ciąg zaobserwuje również odbiorca klucza w punkcie B.  Dodatkowym elementem takiego protokołu jest sprawdzenie na części bitów tego czy nie nastąpił podsłuch transmisji. Po pomyślnej weryfikacji, uzyskujemy wynikającą z praw mechaniki kwantowej gwarancję poufności wymienionego klucza.

Za pomocą satelity SpooQy-1, przeprowadzono testy zarówno wytwarzania jaki i analizy stanów splątanych. Splątane fotony nie były jednak emitowane poza nanosatelitę,  do odbiorców w przestrzeni kosmicznej lub na powierzchni Ziemi.  To już będzie stanowiło przedmiot kolejnych misji. W ramach tego projektu, cały eksperyment został przeprowadzony w obrębie zamkniętego modułu doświadczalnego, zawierającego źródło splatanych fotonów oraz ich analizator.

Do wytworzenia par splątanych kwantowo fotonów wykorzystano, powszechnie stosowany w warunkach laboratoryjnych, proces zwany spontanicznym parametrycznym obniżaniem częstości (SPDC – Spontaneous Parametric Down-Conversion). W zjawisku tym, wysokoenergetyczny (np. ultrafioletowy) foton ulega w optycznie nieliniowym ośrodku konwersji na dwa niżej-energetyczne fotony, występujące już w stanie splątanym. Wyniki przeprowadzonego eksperymentu raportują o wytworzeniu w ten sposób, w warunkach kosmicznych, stanu Bella Φ- (jest to stan bardzo podoby do stanu Φ+, różniący się od niego jedynie względną fazą pomiędzy stanami bazowymi).

BBO
Wytwarzanie splątanych kwantowo par fotonów w procesie spontanicznego parametrycznego obniżania częstości (SPDC – Spontaneous Parametric Down-Conversion). Źródło

W układzie eksperymentalnym, jako źródło fotonów zastosowano diodę laserową (LD) , generującą wiązkę fotonów o długości fali 405 nm (granica światła widzialnego, w stronę bliskiego ultrafioletu) i szerokości spektralnej równej 160 MHz. Do wytworzenia stanów splątanych wykorzystano dwie płytki wykonane z boranu baru (BBO), pomiędzy którymi ustawiono płytkę półfalową (HWP), dokonującą obrotu polaryzacji o 90 stopni. W celu usunięcia z wiązki wejściowego (pompującego) światła laserowego, które nie uległo konwersji w procesie SPDC, zastosowano lustro dichroiczne (DM1), pełniące funkcję filtru.  Natomiast, aby skompensować dyspersję otrzymanych fotonów na drodze optycznej zastosowano kryształ wanadanu (V) itru – YVO4. Tak otrzymany sygnał został rozdzielony do dwóch analizatorów za pomocą kolejnego lustra dichroicznego (DM2). Każdy z nich składał się z ciekłokrystalicznego rotatora polaryzacji (LCPR), polaryzatora (P) oraz fotodiody lawinowej (GM-APD) i analizował jeden z fotonów należący do kwantowo splątanej pary. Zarejestrowane fotony uznawano za pochodzące z jednej splątanej kwantowo pary jeśli zaobserwowano je w oknie czasowym o szerokości ~ 5 ns.

Spooqy_setup
Uproszczony schemat układu doświadczalnego w nanaosatelicie SpooQy-1. Źródło

Za pomocą takiego układu doświadczalnego, przeprowadzono eksperyment w którym wykazano, że wartość parametru S, dla wytworzonych w procesie SPDC stanów Bella przyjmuje wartości większe od klasycznej granicy S=2, a mniejsze od teoretycznie przewidzianej wartości równej S=2√2≈2.83. Uśredniona, otrzymana w ramach eksperymentu wartość to S=2.60±0.07 > 2. Potwierdzono tym samym łamanie nierówności Bella w warunkach orbitalnych. Otrzymany w eksperymencie poziom błędów, odpowiadający parametrowi QBER (Quantum Bit Error Rate) równemu ~ 4 % (około cztery na 100 transmitowanych bitów są błędne), jest wystarczający do tego żeby pomyślnie przeprowadzać kwantową dystrybucję klucza. To wymagać będzie jednak dostosowania układu doświadczalnego do pracy z laserem o większej mocy i układem optycznym umożliwiającym dalekodystansową komunikację optyczną.

MzY1Mzk5OQ
Fizyczna realizacja układu doświadczalnego w nanaosatelicie SpooQy-1. Źródło

Przybliżone tu wyniki grupy z Centrum Technologii Kwantowych w Singapurze, którego dyrektorem do niedawna pozostawał Polak prof. Artur Ekert, to z jednej strony zwieńczenie wielu lat intensywnej pracy a z drugiej preludium do kolejnych, jeszcze szerzej zakrojonych, kwantowych projektów kosmicznych.  Do następnych milowych kroków należą niewątpliwie przeprowadzanie kwantowej dystrybucji klucza pomiędzy dwiema nanosatelitami [5] oraz pomiędzy nanosatelitą a stacją naziemną [6].  Prace w tym kierunku, w szczególności w kontekście wykorzystania łatwiejszej wersji kwantowej dystrybucji klucza nie opartej na splątaniu kwantowym, już trwają. Ponadto, nanosatelitarne eksperymenty ze splątaniem kwantowym w warunkach orbitalnych otwierają możliwość do badań podstawowych, szczególnie w kontekście związku pomiędzy teorią grawitacji w fizyką kwantową.  Warte podkreślenia jest to, że dzięki wykorzystaniu platform typu CubeSat, projekty tego typu stają się możliwie do realizacji również w warunkach polskich.  W kierunku tym zwracamy się ramach działającego na Uniwersytecie Jagielloński w Krakowie zespołu naukowego Quantum Cosmos Lab.

Biblografia

[1] Aitor Villar, et al., Entanglement demonstration on board a nano-satellite, Optica 7, 734-737 (2020).
[2] J-G Ren et al.Ground-to-satellite quantum teleportation, Nature 549, 70–73 (2017).
[3] Zhongkan Tang, et al., Generation and Analysis of Correlated Pairs of Photons aboard a Nanosatellite, Phys. Rev. Applied 5, 054022  (2016).
[4] Artur K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
[5] Denis Naughton, et al., Design considerations for an optical link supporting intersatellite quantum key distribution, Optical Engineering 58(1), 016106 (2019).
[6] R. Bedington, et al.Nanosatellite experiments to enable future space-based QKD missionsEPJ Quantum Technology 2016 3:12 (2016).

         © Jakub Mielczarek

Artykuł został opublikowany na portalu Space24.

Kwantowe technologie kosmiczne

Większość z nas każdego dnia korzysta z jednej z kwantowych technologii kosmicznych – zegarów atomowych, zainstalowanych na satelitach systemów nawigacyjnych, takich jak GPS i  Galileo. Zastosowanie zjawisk kwantowych w branży kosmicznej nie jest więc czymś nowym. Jednakże, ostatnie lata przyniosły szereg obiecujących wyników, które pozwalają spojrzeć na wykorzystanie kwantowej natury światła i materii w warunkach kosmicznych w dużo szerszym kontekście.  Niniejsze opracowanie ma na celu dostarczenie zwięzłego przeglądu głównych możliwości jakie rodzą się na styku mechaniki kwantowej i inżynierii kosmicznej.

Zegary, sensory i metrologia kwantowa

Jak już wspomniałem powyżej, zegary atomowe są najpowszechniejszym przykładem technologii kwantowych wykorzystywanych w warunkach kosmicznych. W szczególności, satelity europejskiego systemu Galileo pracują w oparciu o zarówno tradycyjne zegary Rubidowe jak i precyzyjniejsze pasywne masery wodorowe (odpowiedniki laserów działające w zakresie mikrofal). W przypadku zegara wodorowego, wykorzystywane jest doskonale znane wszystkim astronomom przejście kwantowe pomiędzy poziomami w strukturze nadsubtelnej wodoru, czyli osławiona linia neutralnego wodoru 21 cm, której odpowiada częstotliwość około 1,420 GHz (co można wyprowadzić na gruncie mechaniki kwantowej). Okres oscylacji równy jest więc około 0.704 ns a osiągana dokładność pracy takiego zegara to około 0.45 ns na 12h pracy zegara [1]. Niezwykle dokładny pomiar czasu z wykorzystaniem maserów wodorowych przekłada się na większą precyzję pozycjonowania (sięgający 10 cm promień błędu) systemu Galileo, względem konkurencyjnych systemów GPS, Beidou i GLONASS. Warto dodać, że precyzyjne pomiary czasu mają ogromne znaczenie nie tylko dla nawigacji naziemnej, ale również dla nawigacji statków kosmicznych.

Kolejnego, jednak już nieco mniej oczywistego przykładu zastosowania układu kwantowego w warunkach kosmicznych dostarczają kondensaty Bosego-Einsteina. Kondensaty Bosego-Einsteina są konfiguracjami w których bozonowe stopnie swobody (cząstki o spinie całkowitym) makroskopowo obsadzają ten sam stan podstawowy (stan o najniższej energii).  W konsekwencji, gęstość prawdopodobieństwa poszczególnych cząstek (związana z ich funkcją falową) nabiera interpretacji koncentracji materii w kondensacie i może być poddawana analizie optycznej.  Własność ta znajduje zastosowanie m.in. przy budowie interferometrów atomowych, które okazują się być niezwykle wrażliwe na zmiany natężenia pola grawitacyjnego. Opierające swoje działanie na kondensatach Bosego-Einsteina grawimetry doczekały się już wdrożeń komercyjnych, a ich czułość sięga poniżej 10^{-9} g [2] (g jest przyśpieszeniem grawitacyjnym na powierzchni Ziemi).

Wysoka wrażliwość interferometrów atomowych na zmiany pola grawitacyjnego wygenerowała zainteresowanie przeprowadzaniem eksperymentów w warunkach swobodnego spadku. Badania takie, motywowane zarówno możliwymi zastosowaniami praktycznymi jaki i chęcią lepszego zrozumienia wpływu pola grawitacyjnego na układy kwantowe, zostały przeprowadzone m.in. we wieży swobodnego spadku w Bremie [3].  W 2017 roku udało się natomiast zrealizować pierwszą kosmiczną misję z wykorzystaniem kondensatu Bosego-Einsteina. Eksperyment ten przeprowadzono z pomocą rakiety MAIUS-1, wykonującej lot paraboliczny i osiągającej pułap około 243 km nad poziomem morza [4].

BEC
Schemat rakietowego eksperyment z kondensatem Bosego-Einsteina, przeprowadzonego w 2017 roku . Źródło

Powodzenie misji stanowi ważny krok w stronę grawimetrii satelitarnej opartej na wykorzystaniu kondensatów Bosego-Einsteina.  Ma to również znaczenie w kontekście zrozumienia pewnych aspektów oddziaływania (klasycznego) pola grawitacyjnego na układy kwantowe. Watro również podkreślić, że opracowane pod kątem eksperymentu rozwiązania inżynieryjne będą mogły znaleźć szersze zastosowanie w ramach kwantowych technologii kosmicznych. Przeprowadzenie eksperymentu wiązało się bowiem z koniecznością dostosowania skomplikowanego układu doświadczalnego do wymogów stawianych przed technologiami kosmicznymi (m.in. odporność na wibracje i przeciążenia, ograniczenia na rozmiary układu). Warto w tym miejscu zaznaczyć, że wytworzenie kondensatu Bosego-Einsteina wymaga ochłodzenia materii do skrajnie niskich temperaturach, przyjmujących typowo wartości rzędu ułamków mikrokelwinów.

Z punktu widzenia badań podstawowych, interferometry atomowe oparte na kondensatach Bosego-Einsteina rozważane są również w kontekście budowy nowego typu naziemnych i kosmicznych detektorów fal grawitacyjnych [5].   Zanim jednak takie rozwiązania powstaną, własności mechaniki kwantowej zostaną wykorzystane w celu redukcji szumu w obecnie przygotowywanym kosmicznym obserwatorium fal grawitacyjnych LISA. Już teraz, w celu obejścia problemu szumu śrutowego w naziemnych interferometrycznych obserwatoriach fal grawitacyjnych stosuje się tak zwane ściśnięte stany kwantowe światła [6]. Podejście to jest przykładem metrologii kwantowej, wdrożonej już w warunkach ziemskich, a której implementacja w misjach satelitarnych pozostaje jedynie kwestią czasu.

Komunikacja kwantowa

Niewątpliwie, wzbudzającym największe emocje i oczekiwania kierunkiem rodzącym się na styku inżynierii kosmicznej i mechaniki kwantowej jest tak zwana łączność kwantowa (o której pisałem m.in. we wpisie kwantowa łączność satelitarna).  W istocie, jest to wykorzystanie stanów kwantowych pojedynczych fotonów do przesyłania informacji. Ponieważ jednak przepustowość, powstałych w ten sposób, kanałów kwantowych nie może konkurować z przepustowością dostępnych łączy klasycznych, kanał kwantowy wykorzystywany jest jedynie do wymiany tak zwanego sekretnego klucza (będącego ciągiem bitów). Klucz ten umożliwia zastosowanie silnych algorytmów klasycznej kryptografii symetrycznej (takich jak AES-256) dla danych przesyłanych drogą konwencjonalną. Podejście takie nosi nazwę kwantowej dystrybucji klucza (ang. quantum key distribution – QKD) i stanowi jeden z filarów kryptografii kwantowejZaletą takiego rozwiązania jest, wynikająca z zasad mechaniki kwantowej, teoretyczna niepodatność protokołów na ataki (w praktyce, istnieją jednak możliwości ataków fizycznych na systemy kryptografii kwantowej).

Z uwagi na wykładniczne tłumienie sygnału kwantowego w światłowodach, wykorzystanie  przestrzeni kosmicznej daje obecnie jedyną możliwość przeprowadzenia kwantowej dystrybucji klucza na odległościach kilkuset i kliku tysięcy kilometrów.  Pierwszej tego typu satelitarnej komunikacji kwantowej dokonano w 2017 roku z wykorzystaniem chińskiego satelity Micius [7].

QDK
Zrealizowane, obecne i planowane misje satelitarne przeprowadzające kwantową dystrybucję klucza. Źródło

Rozwiązania satelitarne w skali satelity Micius są niezwykle skomplikowane i kosztowne. Aby więc, przy ograniczonych zasobach, przyśpieszyć prace nad satelitarną komunikacja kwantową, grupy badawcze skłaniają się obecnie do dużo tańszych rozwiązań nanosatelitarnych, w szczególności w standardzie CubeSat. Eksperymenty te mają zarówno na celu przetestowanie pracy systemów optyki kwantowej w warunkach kosmicznych jak również samą łączność kwantową pomiędzy satelitą z stacją naziemną.

Do kategorii misji testujących same układy optyczne (bez łączności) można zaliczyć nanosatelitę Galassia (2U) [8], za pomocą której w 2015 roku przeprowadzono testy systemu Spontaneous Parametric DownConversion (SPDC), wytwarzającego splątane stany kwantowe mające zastosowanie w protokole Ekerta E91.  Kierunek ten jest rozwijany obecnie ramach cubesata SpooQySat (3U) [9]. Do misji nanosatelitarnych mających na celu przetestowanie łączności kwantowej możemy natomiast zaliczyć proponowane projekty takie jak Nanobob (12U) [10] i Q3Sat (3U) [11]. Są one zaprojektowane w konfiguracji uplink. Ich konstrukcja nie wymaga więc instalowania systemu do przygotowywania stanów kwantowych a jedynie prostszy układ detekcyjny. Z drugiej strony jednak, rozwiązanie takie jest mniej korzystne z punktu widzenia czynnika atmosferycznego. Mianowicie, w przypadku  konfiguracji downlink, turbulencje atmosferyczne wpływają na kierunek propagacji fotonów dopiero na końcowym etapie drogi, powodując jedynie nieznaczne poszerzenie wiązki. Natomiast, w przypadku konfiguracji uplink, kierunek propagacji fotonów jest najpierw zaburzony przez czynnik atmosferyczny,  po czym dewiacja od wyjściowej osi optycznej narasta w trakcie jego dalszej propagacji. Dlatego też, zarejestrowanie fotonu wymagać będzie większej średnicy zwierciadła. 

Ciekawym wynikiem w kontekście komunikacji kwantowej było niedawne wykorzystanie retroreflektoru zainstalowanego na jednym z satelitów należących do systemu GLONASS do odbicia pojedynczych fotonów [12]. Wyniki tego eksperymentu rodzą nadzieję na przyszłe wykorzystanie pasywnych układów optycznych umieszczonych na satelitach do prowadzenia komunikacji kwantowej. Pozwoliłoby to znacznie uprościć konstrukcję i obniżyć koszty satelitów do kwantowej  dystrybucji klucza, przenosząc środek ciężkości złożoności technologicznej takich systemów na powierzchnię Ziemi.

Warto zaznaczyć, że komunikacja kwantowa z uwagi na wykorzystanie światła laserowego wpisuje się również w kierunek komunikacji laserowej, dostarczającej w przypadku łączności klasycznej dużo większych przepustowości niż łączność radiowa (co jest prostą konsekwencją mniejszej długości fali). Obszar ten jest obecnie rozwijany w Europie w ramach projektu ESA ARTES ScyLight. Postęp w technologii kwantowej łączności satelitarnej (szerzej – kwantowego internetu) oraz metrologii kwantowej jest również obecnie wspierany m.in. w ramach programu flagowego Komisji Europejskiej Quantum Flagship.

Teleportacja kwantowa i efekty relatywistyczne

Nie można utworzyć idealnej kopii (klonu) nieznanego stanu kwantowego, co stanowi fundament bezpieczeństwa komunikacji kwantowej. Możliwe jest natomiast dokonanie jego kwantowej teleportacji (przesłania stanu kwantowego z prędkością światła), wykorzystując połączenie kanału kwantowego oraz klasycznego. Teleportacja kwantowa stanowi bardzo ważny element systemów przesyłania i przetwarzania informacji kwantowej. Jej eksperymentalnego potwierdzenia dokonano po raz pierwszy w 1997 roku [13]. Po 20 latach od tego przełomowego momentu, w 2017 roku, przeprowadzono pierwszą teleportację stanu kwantowych fotonu z powierzchni Ziemi na niską orbitę okołoziemską [14]. W ramach tego eksperymentu dokonano teleportacji sześciu różnych typów stanów kwantowych fotonu. W każdym z przypadków zaobserwowano poziom wierności (ang. fidelity) przesłanych stanów przekraczający wartość dla najlepszej strategii klasycznej, co potwierdza realność przeprowadzonego protokołu teleportacji.

Teleportation
Układ eksperymentalny za pomocą którego w 2017 roku przeprowadzono teleportację stanu kwantowego z powierzchni Ziemi na niską orbitę okołoziemską. Źródło

Jak już wcześniej zaznaczono, wykorzystanie zjawisk kwantowych w warunkach kosmicznych dostarcza zarówno narzędzi do badania zjawisk grawitacyjnych (np. detekcja fal grawitacyjnych) jak również pozwala empirycznie eksplorować pewien obszar oddziaływania (klasycznego) pola grawitacyjnego na układy kwantowe. Dotyczy to przede wszystkim wpływu pola grawitacyjnego na ewolucję układu kwantowego. Okazuje się, że efekty związane z geometrią czasoprzestrzeni mogą mieć niezaniedbywalny wpływ na zachowanie układów kwantowych w pobliżu Ziemi. Rozważania te, w szczególności, dotyczą kwantowej teorii pola na przestrzeniach zakrzywionych. Teorię tę stosujemy głównie do opisu promieniowania czarnych dziur oraz pierwotnych zaburzeń kosmologicznych, jednakże kwantową teorię pola na przestrzeniach zakrzywionych możemy wykorzystać również do opisu paczek falowych fotonów wykorzystywanych w komunikacji kwantowej. Co więcej, bardzo dobre przybliżenie geometrii czasoprzestrzennej w pobliżu Ziemi dostarcza metryka Schwarzschilda, opisująca nierotujące czarne dziury (w przypadku Ziemi, promień Schwarzchilad wynosi ok. 9 mm). Wykorzystując tę metrykę można np. przewidzieć poziom szumu w kanale kwantowym wynikający z grawitacyjnego przesunięcia ku czerwieniCo ciekawe, wartość skumulowanego efektu relatywistycznego (grawitacyjne przesunięcie ku czerwieni + relatywistyczny efekt Dopplera) może prowadzić do błędów w komunikacji kwantowej sięgających ~1% [15]. Taki wkład nie będzie mógł zostać pominięty przy planowaniu przyszłych satelitarnych systemów do kwantowej dystrybucji klucza, podobnie jak uwzględnienie efektów relatywistycznych jest dzisiaj niezbędne do osiągnięcia odpowiednio wysokiej precyzji systemów nawigacji satelitarnej.

Podsumowanie

Kwantowe technologie coraz odważniej wkraczają w świat branży kosmicznej, skutkując kształtowaniem się nowej fascynującej dziedziny – kwantowych technologii kosmicznych. Jako główne praktyczne zastosowania tego kierunku rozwojowego  rysują się obecnie: precyzyjne pomiary czasu (nawigacja), pomiary grawimetryczne oraz komunikacja kwantowa. Ponadto, kosmiczne technologie kwantowe dostarczają narzędzi do prowadzenia nowych eksperymentów w zakresie badań podstawowych takich jak: detekcja fal grawitacyjnych i  wpływ pola grawitacyjnego na zjawiska kwantowe. Szczególnie interesująca jest możliwość urzeczywistnienia wizji satelitarnego internetu kwantowego, który dostarczyłby niepodatnego na kryptoanalizę sposobu wymiany szczególnie wrażliwych informacji. Wprowadzenie takiego rozwiązania stanowiłoby odpowiedź na obecne i przyszłe zapotrzebowanie zarówno cywilne jak i wojskowe. Na drodze do osiągnięcia tego celu stoi wiele wyzwań, zarówno natury technicznej jak i organizacyjnej (m.in. związanej z finansowaniem tak ambitnych przedsięwzięć).  Należy być również świadomym ograniczeń takiego systemu, m.in. wynikających z możliwości zakłócenia jego pracy zarówno poprzez naturalne czynniki atmosferyczne jak i  wywołane celowo, sztuczne, zakłócenia.   

Pozwolę sobie na koniec dodać, że warunki kosmiczne stanowią całkiem dogodne środowisko dla systemów kwantowych. Próżnia kosmiczna dostarcza mianowicie odpowiednią izolację układów kwantowych przed niepożądanym wpływem środowiska (które prowadzi do dekoherencji układów kwantowych). Wiązki fotonów mogą zaś bez przeszkód propagować informację kwantową poprzez przestrzeń kosmiczną. Stwarza to nadzieję na rozwój kwantowych technologii kosmicznym, nie tylko w najbliższym otoczeniu Ziemi ale również w bardziej odległych obszarach. Z teoretycznego punktu widzenia, dopuszczalne jest “rozpięcie” kanału kwantowego chociażby pomiędzy Ziemią (lub orbitą okołoziemską) a Księżycem. Pozwoliłoby to m.in. na pobieranie informacji kwantowej bezpośrednio ze zlokalizowanych na Księżycu sensorów kwantowych i przetwarzanie informacji kwantowej bez konieczności jej “tłumaczenia” na informację klasyczną. Jednym z zastosowań takiego rozwiązania mogłaby być budowa kosmicznych interferometrycznych teleskopów optycznych, wykorzystujących teleportację stanów kwantowych światła [16]. Otrzymana syntetyczna apertura takich teleskopów byłaby nieporównywalna z jakąkolwiek istniejącą obecnie, dając możliwość prowadzenia obserwacji optycznych z niespotykaną rozdzielczością kątową. To oczywiście wciąż jedynie śmiałe pomysły, dopuszczalne jednak przez fizykę i nie aż tak odległe z technicznego punku widzenia. Od nas zależy to czy kiedykolwiek się urzeczywistnią.

Bibliografia

  • [1] https://www.esa.int/Our_Activities/Navigation/Galileo/Galileo_s_clocks
  • [2] V. Menoret et al., Gravity measurements below 10−9 g with a transportable absolute quantum gravimeterScientific Reports  8, Article number: 12300 (2018
  • [3] H. Müntinga et al., Interferometry with Bose-Einstein Condensates in Microgravity, Phys. Rev. Lett. 110 (2013) no.9, 093602 [arXiv:1301.5883]
  • [4] D. Becker et al.Space-borne Bose-Einstein condensation for precision interferometr, Nature 562, 391–395 (2018) [arXiv:1806.06679]
  • [5] S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich and S. Rajendran, Gravitational Wave Detection with Atom Interferometry, Phys. Lett. B 678 (2009) 37 [arXiv:0712.1250]
  • [6] LIGO Scientific Collaboration, Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Photonics 7, 613–619 (2013) [arXiv:1310.0383]
  • [7] Sheng-Kai Liao, et al., Satellite-relayed intercontinental quantum network, Phys. Rev. Lett. 120, 030501 (2018) [arXiv:1801.04418]
  • [8] Z. Tang, et al., Generation and Analysis of Correlated Pairs of Photons aboard a Nanosatellite, Phys. Rev. Applied 5 (2016) no.5, 054022 [arXiv:1603.06659]
  • [9] R. Bedington et al.Nanosatellite experiments to enable future space-based QKD missions, EPJ Quantum Technology 2016 3:12
  • [10] E. Kerstel et al.Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration, EPJ Quantum Technology 5, Article number: 6 (2018)  [arXiv:1711.01886]
  • [11] S. P. Neumann et al.Q3Sat: quantum communications uplink to a 3U CubeSat—feasibility & design, EPJ Quantum Technol. (2018) 5: 4 [arXiv:1711.03409]
  • [12] L. Carderaro et al.,  Towards Quantum Communication from Global Navigation Satellite System, Quantum Sci. Technol. 4, 015012 (2019) [arXiv:1804.05022].
  • [13] D. Bouwmeester et al., Exerimental quantum teleportation, Nature 390, 575–579 (1997) [arXiv:1901.11004]
  • [14] J-G Ren et al.Ground-to-satellite quantum teleportation, Nature 549, 70–73 (07 September 2017) [arXiv:1707.00934]
  • [15] D. E. Bruschi, T. Ralph, I. Fuentes, T. Jennewein and M. Razavi, Spacetime effects on satellite-based quantum communications, Phys. Rev. D 90 (2014) no.4, 045041. [arXiv:1309.3088]
  • [16] E. Khabiboulline et al., Quantum-Assisted Telescope Arrays [arXiv:1809.03396]

@ Jakub Mielczarek

 

Naukowe wyzwania a bezpieczeństwo Polski

Nie mając jasno wyznaczonego celu skazani jesteśmy na, jak mówią fizycy, błądzenie przypadkowe, przegrywając z tymi którzy takie cele przed sobą postawili i konsekwentnie do nich dążą. Dotyczy to zarówno naszych osobistych dróg życiowych, jaki i tych obranych kolektywnie przez zbiory jednostek, jakimi są społeczeństwa.

Czy społeczeństwo polskie wyznacza sobie takie globalne cele? Więcej, czy stawia przed sobą ambitne wyzwania, które wymagałby determinacji i zaangażowania ponad podziałami? Trudno mi wskazać jednoznacznie na istnienie obecnie w Polsce takich wyzwań. Mamy pewne, rozmyte, wspólne cele jak chociażby to, że chyba Wszyscy chcielibyśmy żeby Polska stała się krajem silniejszym ekonomicznie. Taki cel nie jest jednak dobrze zdefiniowany. Wymaga on skwantyfikowania, na podobnej zasadzie jak przedsiębiorstwa określają roczne (lub bardziej odległe) plany przychodów i zysków, które później uparcie starają się realizować. W przypadku Polski, za ekonomiczne wyzwanie można by uznać wprowadzenie Polski do grupy G20 w przeciągu, powiedzmy, pięciu lat. To jest całkiem dobrze określony cel, którego osiągnięcie wymaga mobilizacji i odpowiedniego zaangażowania w obszarze gospodarki (ale również dyplomacji) w przeciągu najbliższych lat. Można, w dużym stopniu, określić jakie warunki musielibyśmy spełnić żeby dołączyć do tego elitarnego grona.

Nie w mniejszym stopniu, jako naukowca,  zastanawia mnie również to czy przed Polską Nauką możemy postawić pewne globalne wyzwania, wyznaczające kurs jej rozwoju, co pozwoliłoby systematycznie odrabiać straty do światowej czołówki. Nie stawiając przed rodzimą Nauką takich ambitnych celów, będziemy niestety skazani na pogodzenie się z pozycją w środku stawki. Ale czy takie dobrze określone wyzwania da się w ogóle zdefiniować i czym by one mogły być? Nasuwać się może na myśl: podniesienie polskich uczelni w rankingu szanghajskim, wzrost liczby międzynarodowych patentów i publikacji w Nature. Wprowadzenie Uniwersytetu Warszawskiego i Uniwersytetu Jagiellońskiego do trzeciej setki rankingu szanghajskiego może wydawać się całkiem dobrze określonym wyzwaniem.  Nie o to tu jednak chodzi. Nie uprawiamy Nauki dla pozycji w rankingach. To są kwestie wtórne.  Nauka powinna, przede wszystkim, pracować dla dobra społeczeństwa.  A jeśli będzie to robione właściwie to i poziom jaki prezentuje będzie rósł. Dlatego też, chciałbym zastanowić się tutaj nad tym jaka Nauka jest Polsce najbardziej potrzebna i jakie w ramach niej wyzwania powinniśmy podejmować wspólnymi siłami, na skali dużo szerszej niż kilkuosobowe zespoły naukowe, na których opiera się obecnie, w głównej mierze, praca badawcza w Polsce.         

Nie jest nowym stwierdzenie że, w pierwszej kolejności, rodzima Nauka powinna podejmować kierunki bezpośrednio związane ze strategicznymi obszarami. W artykule tym, chciałbym zaś podkreślić znaczenie, w mojej opinii, najważniejszego z nich, jakim jest bezpieczeństwo, zarówno to militarne jak i energetyczne. Nie trzeba nikomu uzmysławiać sytuacji geopolitycznej Polski i związanych z tym zagrożeń. Istnieje niezliczona liczba opracowań dyskutujących to zagadnienie, pozwolę więc sobie pominąć wchodzenie w szczegóły.  Bezpieczeństwo jest kwestią nadrzędną i bez osiągnięcia odpowiedniego jego poziomu, trudno myśleć o stabilnym długofalowym rozwoju Polski.  Niestety, obecnie rozwój nowoczesnego zaplecza militarnego w Polsce opiera się głównie na kontraktach z zagranicznymi dostawcami technologii. Jestem realistą, pewnych zaległości nie da się nadrobić nawet w trzydzieści lat. Problem zapóźnienia technicznego Polski jest głęboki i trudny do nadrobienia w krótkim okresie czasu. Jednakże, moje obserwacje nie wskazują na to by w obszarze nowoczesnych technologii wojskowych następowała w Polsce znacząca poprawa.

W krajach wysoko rozwiniętych, takich jak Stany Zjednoczone, rozwój technologii z zakresu bezpieczeństwa jest silnie związany z prowadzeniem innowacyjnych badań naukowych. Jest to z korzyścią zarówno dla podniesienia poziomu bezpieczeństwa jak i dla samej Nauki, nie wspominając o ogromnym znaczeniu transferu opracowanych rozwiązań do przemysłu cywilnego. W Polsce, obszar ten wydaje się być zaś zupełnie niezagospodarowany. A przecież może on stanowić doskonały motor dla rozwoju Polskiej Nauki, dostarczając nam równocześnie tak ważnego poczucia bezpieczeństwa.

Zanim przejdę do podania propozycji konkretnych działań w tym kierunku, pozwolę sobie w tym miejscu zwrócić uwagę na jeszcze jedną kwestię. Temat jest mi dosyć dobrze znany, a mianowicie rzecz dotyczy tego to co kieruje młodymi naukowcami w decyzji o prowadzeniu swoich badań poza granicami Polski. Skłaniam się do stwierdzenia, że w dzisiejszych czasach, czynnikiem decydującym nie są zazwyczaj kwestie finansowe. Prowadząc solidne badania, godziwe zarobki można  osiągnąć również w Polsce. Chodzi natomiast o to, że wciąż prowadzone w Polsce badania są często po prostu mało interesujące. Włączenie się w nie, nie stanowi dla młodych naukowców wyzwania. Chcą robić coś ciekawszego i ważniejszego, na wyższym niż w Polsce poziomie. Możliwość taką odnajdują w grupach badawczych prowadzących nowatorskie prace naukowe, poza granicami naszego kraju.

Wydaje mi się, że podjęcie w Polsce strategicznych kierunków badawczych mających, jak to już podkreśliłem, znaczenie dla bezpieczeństwa naszego kraju, stanowiłby bardzo atrakcyjną ofertę dla młodych naukowców. Nie chodzi oczywiście o to żeby młodzi naukowcy nie wyjeżdżali. Wyjeżdżać trzeba, rzecz w tym żeby mieć również do czego wracać. Ambitne, zakrojone na dużą skalę programy naukowe o bezpośrednim znaczeniu dla Polski działałyby jak magnes na najzdolniejsze umysły.  Kiedy można uczestniczyć w takim przedsięwzięciu, kwestia wynagrodzenia staje się poboczna. Ważne, że można być „u siebie”, blisko rodziny i przyjaciół, realizując swoje pasje i jednocześnie robiąc coś ważnego dla całego społeczeństwa. To są, uważam, kwestie niezwykle istotne. W Polsce, możliwość realizowania się w taki sposób jest jednak ograniczona.

W Stanach Zjednoczonych, innowacyjne projekty naukowe o znaczeniu dla obronności finansowane są, między innymi, przez osławioną Defense Advanced Research Project Agency (DARPA). Trochę w cieniu, działa jeszcze kilka podobnych agencji, jak w szczególności Intelligence Advanced Research Project Agency (IARPA), finansująca zaawansowane badania o znaczeniu dla pracy wywiadu. Próżno szukać w Polsce odpowiedników takich instytucji. W ramach firm wchodzących w skład Polskiej Grupy Zbrojeniowej oraz na Wojskowej Akademii Technicznej prowadzone są oczywiście prace badawczo-rozwojowe na potrzeby Sił Zbrojnych RP. Chodzi jednak o to by wyjść z badaniami mającymi znaczenie dla bezpieczeństwa poza te ramy i zaangażować potencjał naukowy uniwersytetów i cywilnych uczelni technicznych, realizując szeroko zakrojone (często interdyscyplinarne) projekty naukowe o znaczeniu strategicznym.

Żeby wyraźniej nakreślić to o jakiego typu przedsięwzięciach mowa, przytoczę tu kilka przykładów projektów finansowanych przez DARPA i IARPA. W szczególności, w latach 2001-2005 DARPA przeznaczyła 100 mln USD na projekt Quantum Information Science and Technology Program (QuIST), dedykowany przede wszystkim budowie systemów kryptografii kwantowej. Rozwiązania tego typu wykorzystują fizykę mikroświata – mechanikę kwantową – do tego by  wymieniać w sposób bezwarunkowo bezpieczny informacje pomiędzy np. jednostkami wojskowym lub ośrodkami decyzyjnymi.  Z kolei, jednym z projektów finansowanych obecnie przez IARPA jest Machine Intelligence from Cortical Networks (MICrONS), którego celem jest uzyskanie konektomu jednego milimetra sześciennego kory mózgowej gryzonia, co będzie miało znaczenie dla uczenia sztucznych sieci neuronowych. Takie sieci znajdą później zastosowanie w systemach wykrywania różnego typu zagrożeń. Finansowanie  projektu to również 100 mln USD. Warto podkreślić, że jest to bardzo interdyscyplinarny projekt w który zaangażowani są m.in. neurobiolodzy, chemicy, fizycy, informatycy i inżynierowie. Jest to więc doskonała okazja do rozwijania współpracy pomiędzy różnymi ośrodkami naukowymi. Kolejny aktualny przykład to program Blackjack, konstelacji dwudziestu nanosatelitów o zastosowaniu militarnym. DARPA zarezerwowała w 2018-tym roku na ten cel ponad 100 mln USD. Bez wątpienia, w projektach tego typu chcieliby bez wahania wziąć udział młodzi ale i starsi Polscy naukowcy i inżynierowie. Warto w tym miejscu zaznaczyć, że naukowe projekty na rzecz bezpieczeństwa, jak chociażby te przytoczone powyżej, dotyczą obszarów zarówno badań stosowanych jak i badań podstawowych. Chciałbym tym samym rozwiać mogącą się pojawić wątpliwość o brak podstawowego charakteru tego typu prac badawczych. Jak uczy nas doświadczenie, to właśnie odpowiednio sprofilowane badania podstawowe mogą być źródłem rozwiązań które później zadecydują o przewadze militarnej. 

Wracając do Polski, budżet MON na rok 2019 wynosi  44,7 mld PLN (2,0% PKB). A gdyby, na przykład, przeznaczyć z takiej kwoty jeden miliard złotych rocznie na innowacyjne programy badawcze związane z obronnością. Przedsięwzięcie takie mogłoby być również realizowane  międzyresortowo. Niewątpliwie, taki program mógłby przynieść ogromne korzyści, zarówno dla bezpieczeństwa jak i dla samej Polskiej Nauki oraz polskiej gospodarki.  W kwocie 1 mld PLN (porównywalnej z jednym sporym kontraktem zagranicznym) udałoby się zrealizować powiedzmy 10 dużych projektów o budżecie 100 mln PLN każdy. Z budżetem 100 mln złotych można np. zbudować i umieścić na niskiej orbicie okołoziemskiej mikrosatelitę (ok. 10-20 kg) o przeznaczeniu wojskowym (obrazowanie, łączność lub naprowadzanie pocisków). Za kolejne 100 mln PLN można zrealizować program budowy rakiety suborbitalnej (w przyszłości, elementu systemu Wisła).  100 mln PLN to również wystarczające środki do tego by połączyć najważniejsze ośrodki decyzyjne w Polsce systemami do kwantowej dystrybucji klucza (zbudowanymi w Polsce). W kwocie 100 mln PLN można również zaprojektować i zbudować nowoczesny system radarowy (typu AESA), mogący w przyszłości stanowić część tarczy antyrakietowej.  Wymieniam tu przykłady co do których wiem, że istnieje zaplecze intelektualne i techniczne do ich realizacji w Polsce.  Do tego, w skali roku, pozostaje 5 kolejnych projektów, każdy rozpisany na 4-5 lat realizacji. Projekty takie mogłyby być zarówno w dużym stopniu niezależne jak również kontrybuować jako części większych przedsięwzięć.   

Można sobie wyobrazić o ile bezpieczniejsi i rozwinięci technologicznie stalibyśmy się dzięki takim działaniom w perspektywie dekady, mając zrealizowanych chociażby kilkanaście ambitnych szeroko zakrojonych projektów naukowo-technicznych z zakresu bezpieczeństwa. Polska Nauka zyskałaby silny impuls do rozwoju, zwiększając poziom innowacyjności i atrakcyjności na światowej arenie. Niniejszy artykuł prezentuje jedynie zarys ścieżki która mogłaby do tego doprowadzić. Moim zamysłem było tu zaś, przede wszystkim, sprowokowanie do dalszych przemyśleń nad zasadnością zaprezentowanej tu koncepcji i szansą jej zmaterializowania w polskich realiach. Wizja ta wymaga oczywiście zarówno dalszej pogłębionej analizy jak i późniejszych ewentualnych odważnych decyzji politycznych. W moim przekonaniu, jest ona jednak realna i możliwa do wcielenia.  

© Jakub Mielczarek

Dwanaście technologii jutra

Żyjemy w niesamowitych czasach intensywnego rozwoju wspaniałych technologii. Wiele z nich wywodzi się z zaawansowanych i kosztownych badań podstawowych, inne są wynikiem inżynieryjnej wirtuozerii, bazującej na ugruntowanej już wiedzy naukowej. Jedno jest pewne,  technologie te transformują świat w którym żyjemy  i przez to, w pewnym sensie, również nas samych. Żeby ocenić jakie będą skutki tych przemian należy zrozumieć możliwości i ograniczenia wyłaniających się nowych rozwiązań. Ich lista jest długa, a szczegółowa analiza żmudna i wielowymiarowa. Nie jest jednak moim celem by ją tutaj przeprowadzać. Mógłbym Cię po prostu zanudzić. W zamian, chciałbym zwięźle przedstawić 12 wybranych przeze mnie (jednakże stosunkowo reprezentatywnych) kierunków. Celem jaki sobie stawiam jest to byś mogła lub mógł spojrzeć na nie niejako z lotu ptaka, umożliwiając Ci uchwycenie szerszej perspektywy. Mam nadzieję, że mój wysiłek pomoże Ci, choć w pewnym wymiarze, ujrzeć ostrzej świat w niedalekiej przyszłości i dostrzec w nim dla siebie nowe możliwości, które pozwolą Tobie lub też np. Twojej firmie rozwinąć się. Zrozumienie technologii, pozwoli Ci również lepiej przygotować się na nadchodzące zmiany, przez co łatwiej się do nich dostosujesz i szerzej wykorzystasz pojawiające się nowe szanse. Wybrane przeze mnie kierunki są obecnie intensywnie rozwijane i z dużym prawdopodobieństwem będą miały istotne znaczenie w nieodległej przyszłości, przez którą rozumiem najbliższą dekadę (2020-2030). Na konstrukcję tej listy niewątpliwe miały wpływ moje osobiste zainteresowania i obszar posiadanych kompetencji. Z tego powodu, nie jest ona obiektywna, choć starałem się by cechowała się zróżnicowaniem i zawierała rozwiązania nie tylko z obszarów najbliższych mojej ekspertyzie. Ważnym aspektem, który staram się podkreślić, to znaczenie dyskutowanych kierunków w kontekście wyzwań stojących przed światem.

1. Komputery kwantowe

Pozwolę sobie zacząć od najbliższego mi, jako fizykowi teoretykowi, tematu czyli od technologii kwantowych, a mówiąc precyzyjniej skoncentruję się tutaj na kwestii komputerów kwantowych. Do innych przykładów technologii kwantowych powrócę w punktach 26 i 7.  Komputery kwantowe opierają swoje działanie o zasady mechaniki

ibm-q
Komputer kwantowy firmy IBM. Źródło

kwantowej (fizyki mikroświata). Choć teoretyczne podwaliny ich funkcjonowania powstały jeszcze w latach osiemdziesiątych ubiegłego wieku, dopiero ostatnie lata przyniosły intensywne przyśpieszenie w rozwoju kwantowych technologii obliczeniowych. Rozwój ten przebiegał i nadal przebiega w pierwszej fazie charakteryzującej nowe technologie, związanej z szybkim wzrostem zainteresowania. Efekt ten, na zasadzie sprzężenia zwrotnego napędza rozwój technologi, generując rosnący entuzjazm, w szczególności  inwestorów. Pęcznieją również oczekiwania, które niestety często rozbieżne są z faktycznymi możliwościami technologii. Również kwantowy tzw. hype czeka niebawem przejście do fazy ostudzenia emocji. Technologie kwantowe jednak wybronią się, ponieważ dadzą w wielu obszarach przewagę nad komputerami klasycznymi. Wynika to w szczególności z tak zwanego paralelizmu kwantowego, umożliwiającego zrównoleglenie danego problemu i przez to redukcję jego złożoności obliczeniowej. Sztandarowymi przykładami są: algorytm faktoryzacji Shore’a, algorytm przeszukiwania (nieuporządkowanych zbiorów) Grovera lub algorytm kwantowego wyżarzania (ang. quantum annealing). Ograniczenia kwantowych komputerów wiążą się jednak z dużą podatnością stanów kwantowych kubitów na środowisko zewnętrzne. W celu zredukowania  tego efektu (tzw. kwantowej dekoherencji) procesory kwantowe muszą być przeprowadzane w temperaturze bliskiej zera bezwzględnego. Ponadto, w celu redukcji błędów konieczne jest stosowanie tak zwanej kwantowej korekcji błędów, która wykorzystuje znaczną część kubitów procesora. Ogranicza to istotnie liczbę kubitów, które faktycznie możemy przeznaczyć do wykonania interesującego nas algorytmu. W konsekwencji, użytecznych (tzw. fault tolerant) komputerów kwantowych, które będą dawały możliwość wykonania operacji niemożliwych do przeprowadzenia na superkomputerach klasycznych możemy się spodziewać za nie wcześniej niż 5 lat. Komputery posiadające łącznie 100 kubitów powstaną wcześniej, jednakże poziom ich błędów będzie wciąć zbyt wysoki, a struktura sprzężeń pomiędzy kubitami zbyt rzadka by mogły one konkurować z klasycznymi maszynami. W drugiej połowie nadchodzącej dekady możemy jednak oczekiwać rozwoju szerokiego spektrum zastosowań komputerów kwantowych. W szczególności,  w kontekście rozwiązywania problemów o dużej złożoności (optymalizacja, łamanie szyfrów, uczenie sztucznych sieci neuronowych, itp.) oraz symulacji układów kwantowych (np. w ramach chemii kwantowej, fizyki materii skondensowanej lub kwantowej grawitacji). Przeprowadzanie na procesorach kwantowych symulacji np. skomplikowanych molekuł znajdzie zastosowanie m.in. przy opracowywaniu leków.  Jako wprowadzenie do zagadnienia programowania komputerów kwantowych zachęcam do lektury moich wcześniejszych wpisów: Elementary quantum computing oraz Kwantowe cienie.

2. Nowe technologie kosmiczne

Globalna branża kosmiczna znajduje się obecnie w fazie transformacji z obszaru dominacji państwowych agencji kosmicznych do rosnącego znaczenia przedsiębiorstw, które zaczynają realizować swoje własne programy kosmiczne. Zjawisko to jest częścią tak zwanego podejścia New Space.  Najbardziej znanymi przykładami są tu Space X, Blue Origin oraz Virgin Galactic. Wszystkie te trzy firmy rozwijają technologie wynoszenia ładunków i

xinglong
Kwantowa dystrybucja klucza pomiędzy satelitą Micius a stacją naziemną. Źródło

osób w ramach lotów suborbitalnych lub orbitalnych. Loty suborbitalne mają duże znaczenie dla otwarcia kosmosu dla turystyki. Dotychczasowe sukcesy trzech wspomnianych firm, dają spore szanse na intensywny rozwój suborbitalnej turystyki kosmicznej w nadchodzącej dekadzie. Z drugiej strony, rozwój prywatnych inicjatyw związanych z lotami orbitalnymi, korzystnie wypłyną na ceny umieszczania ładunków na niskiej orbicie okołoziemskiej. Do tego dochodzi miniaturyzacja systemów satelitarnych, w szczególności w ramach standardu CubeSat – kostek o wymiarach 10x10x10 cm (1U), z których można budować w pełni funkcjonalne nanosatelity. Zbudowanie i umieszczenie na niskiej orbicie okołoziemskiej prostego nanosatelity o rozmiarze 1U można dzisiaj przeprowadzić w ramach budżetu zamykającego się w kwocie 1 mln złotych.   Otwiera to szerokie perspektywy do przeprowadzenia badań w warunkach mikrograwitacyjnych, jak również nowe pole do prowadzenia działalności biznesowej. Najpopularniejsze  dzisiaj obszary tej aktywności dotyczą systemów obserwacji ziemi, łączności oraz nawigacji.  Najbardziej, w mojej opinii, nowatorskim kierunkiem technologicznym, który będzie się w tym kontekście rozwijał jest tak zwana kwantowa łączność satelitarna. Bazuje ona na przesyłaniu pojedynczych fotonów, w których stanach kwantowych zakodowany jest klucz umożliwiający bezpieczne przesyłanie informacji (już za pośrednictwem kanałów klasycznych). Ta tak zwana kwantowa dystrybucja klucza stanowi zasadniczy element internetu kwantowego, który dyskutuję w punkcie 7. Warto tu podkreślić, że kwantowa dystrybucja klucza została pomyślnie przeprowadzona w 2017-tym roku na odległościach międzykontynentalnych, wykorzystując specjalnie do tego zbudowanego satelitę Micius. Obecnie przygotowywanych jest szereg projektów rozwijających tę technologię, opierających się na nanosatelitach w standardzie CubeSat [Ref].

3. Biologia syntetyczna

Komórki już nie tylko muszą robić to do czego zostały wykształcone w toku ewolucji. Dzisiejsza nauka zaczyna umożliwiać nam ich programowanie, tak by realizowały zaplanowane przez nas zadania. Podobnie jak w przypadku programowania komputerów, możemy, wykorzystując komórkowy język programowania (np. SBOL), stworzyć program, wynikiem kompilacji którego jest konkretna sekwencja DNA. Dzięki

eight_col_synth_meat
Syntetyczne mięso. Źródło

rozwiniętym technikom syntezy DNA, możemy dzisiaj bez trudu stworzyć zaprojektowany przez nas materiał genetyczny, po czym dokonać jego mikroiniekcji do wnętrza komórki, wymieniając tym samy jej oryginalny “software”. Metodę tę obecnie rozwija się w przypadku jednokomórkowych organizmów jakimi są bakterie. Pozwala to programować je tak by realizowały określone funkcje np. w bioreaktorach. Kolejnym ważnym przykładem z obszaru biologi syntetycznej jest mięso in vitro. Warto tu zaznaczyć, że około 15 % gazów cieplarnianych (metan) pochodzi od zwierząt. Produkcja mięsa jest obecnie nieefektywna, a wzrost zamożności społeczeństw napędza popyt na produkty mięsne, przyśpieszając negatywne zmiany klimatyczne. Istotny jest również aspekt humanitarny, związany z masowym chowem i ubojem zwierząt. Wprowadzenie syntetycznego mięsa stanowi obiecujące rozwiązanie tych problemów. Warto zauważyć, że w bioreaktorach do produkcji syntetycznego mięsa zastosowanie mogą znaleźć opisane wcześniej programowalne bakterie. Dalsze informacje na temat biologi syntetycznej i tego jak samemu zacząć przygodę z tą dyscypliną można znaleźć np. w książce BioBuilder, której pierwszy rozdział można bezpłatnie przeczytać pod niniejszym linkiem.  

4. Sekwencjonowanie genomu

Materiał genetyczny potrafimy dzisiaj nie tylko syntezować, ale również sekwencjonować, choć jeszcze na początku tego milenium było to zadanie niezwykle ambitne. Zakończony w 2005-tym roku projekt zsekwencjonowania ludzkiego genomu – Human Genome Project pochłonął około trzech miliardów dolarów. Od tego czasu, koszt zsekwencjonowania ludzkiego genomu spada szybciej niż wykładniczo, co widać na

costpergenome2015_4
Koszty pełnego sekwencjonowania genomu ludzkiego. Źródło

załączonym wykresie.  Obecnie, cena zsekwencjonowania pełnego genomu wynosi poniżej kilkuset dolarów. Natomiast, za kwotę około 1000 USD można zakupić własny miniaturowy sekwencer oparty o technologię sekwencjonowania przez nanopory (rozwijane głownie przez firmę Oxford Nanopore Technologies). W przeciągu najbliższej dekady, możemy spodziewać się dalszej redukcji kosztów sekwencjonowania genomu, aż do wartości zapewniającej wręcz bezpłatną (w ramach opieki zdrowotnej) możliwość przeprowadzenia takiej analizy.  Wyzwaniem jest jednak to, jaką użyteczną informację możemy wydobyć z analizy naszego genomu. Niewątpliwie, genom zawiera całe bogactwo danych, jednoznacznie nas identyfikujących, w związku z czym podlegać będzie musiał specjalnym regułom bezpieczeństwa. Przesyłanie takiej informacji pomiędzy ośrodkami medycznymi będzie w przyszłości zabezpieczone przez wprowadzane obecnie algorytmy kryptografii postkwantowej lub też z wykorzystaniem rozwiązań kryptografii kwantowej (wykorzystujące kwantowy internet, dyskutowany w punkcie 7). Niewątpliwie, metody sztucznej inteligencji (dyskutowane w punkcie 6) istotnie przyczynią się do analizy materiału genetycznego i przygotowywania na jego podstawie rekomendacji oraz indywidualnych (spersonalizowanych) terapii. Możemy oczekiwać, że powszechne sekwencjonowanie genomu znacząco przyśpieszy rozwój medycyny personalizowanej, w ramach której np. różne wersje danego leku będą podawane w zależności od profilu genetycznego pacjenta.

5. Biodruk 3D 

Biodruk 3D jest wyłaniającą się nową technologią stawiającą sobie za jeden z głównych celów stworzenie narzędzia umożliwiającego wytwarzanie w sposób sztuczny w pełni funkcjonalnych narządów, mogących stanowić transplanty do przeszczepów. Jest to cel niezwykle ambitny, niemniej jednak postęp jaki dokonał się w przeciągu ostatnich kilku

produkt_dscf8374-white-bg-lighter-blue-x-square
Przykładowa komercyjnie dostępna biodrukarka 3D. Źródło

lat (w ramach którego biodruk 3D ukształtował się jako niezależna dyscyplina naukowa) daje silne podstawy do stwierdzenia, że nie ma fundamentalnych przeszkód dla których cel powyższy nie mógłby zostać ostatecznie osiągnięty. Warto przytoczyć tu, że na chwilę obecną z wykorzystaniem technologii biodruku 3D wytworzono między innymi modele: skóry, tkanki wątroby  czy też (bijącego) organoidu serca. Wytworzone w technologii biodruku 3D transplanty ucha, kości i mięśni przeszły pomyśle testy na myszach i szczurach. Powyższe obiecujące wyniki dały impuls do opracowania rozwiązań i usług w zakresie biodruku 3D oferowanych przez takie firmy jak Organovo (USA),  Aspect Biosystems (Kanada), 3D Bioprinting Solutions (Rosja)  czy Rokit (Korea Południowa). Ważnym wyzwaniem dla biodruku 3D jest wykorzystanie pluripotentnych komórek macierzystych, tak by uzyskać możliwość przygotowania transplantu 3D w oparciu o pobrany od pacjenta wycinek tkanki. Zanim jednak biodruk 3D znajdzie zastosowanie w praktyce klinicznej, będzie najpierw wykorzystywany do przygotowania trójwymiarowych hodowli przeznaczonych do testowania leków oraz np. tworzenia (dyskutowanego w punkcie 3) syntetycznego mięsa. Na zakończenie, pozwolę sobie dodać, że od kilku lat badania nad biodrukiem 3D prowadzimy w ramach Garażu Złożoności na Uniwersytecie Jagiellońskim [Ref]. 

6. Sztuczna inteligencja 

Sztuczna inteligencja o której tak dużo dzisiaj słyszymy to głównie tak zwana “wąska” sztuczna inteligencja (Artificial Narrow Intelligence – ANI) wyspecjalizowana na rozwiązywaniu konkretnego typu problemów. Na przykład, ANI potrafi rozpoznawać obrazy  lub też wygrywać z mistrzami gry w go. Zastosowań ANI jest obecnie na prawdę dużo. ANI opiera się głównie na tak zwanych głębokich sztucznych sieciach

intel-neuromorphic-chip-loihi-2
Neuromorficzny procesor Loihi firmy Intel. Źródło

neuronowych (ang. deep learning), których struktura inspirowana jest budową kory mózgowej. Warto tu dodać, że złożony proces uczenia sieci neuronowych może zostać wsparty przez komputery kwantowe (dyskutowane w punkcie ). Nadchodząca dekada przyniesie niewątpliwie nie tylko lawinę nowych zastosowań ANI ale również nastąpi znaczący postęp w kierunku stworzenia tak zwanej ogólnej sztucznej inteligencji (Artificial General Intelligence – AGI). AGI definiuje się jako typ sztucznej inteligencji odpowiadającej zdolnościom umysłowym człowieka.  Rozważa się obecnie kilka dróg do utworzenia AGI. Osobiście, za najbardziej obiecującą (i już najbardziej zaawansowaną)  drogę do osiągnięcia AGI uważam symulacje ludzkiego mózgu. Badania zmierzające w tym kierunku prowadzone są m.in. w ramach flagowego projektu Komisji Europejskiej Human Brain Project (HBP).  Symulacje te napotykają na szereg problemów natury technicznej. Jednym z obiecujących możliwości ich przezwyciężenia i  szybszego przybliżenia nas do AGI są  procesory neuromorficzne. Procesory takie już na poziomie swojej architektury odwzorowują strukturę połączeń neuronalnych, co znacznie ułatwia prowadzenie symulacji. Przykładem takiego procesora jest chip Loihi zbudowany przez firmę Intel.  Zawiera on 130 000 sztucznych neuronów oraz 130 milionów synaps. Architekturę neuromorficzną wykorzystuje się również w niedawno uruchomionym superkomputerze SpiNNaker, działającym w ramach projektu HBP. Do przeprowadzenia symulacji systemów neuronalnych nie wystarczy jednak sam software i hardware. Potrzebne są  również dane wejściowe do przeprowadzenia symulacji, lub mówiąc precyzyjniej emulacji mózgu. Należy je pozyskać z inwazyjnego lub bezinwazyjnego obrazowania mózgu. W szczególności, obiecująca jest inwazyjna metoda oparta o tzw. Serial Section Electron Microscopy. Z jej pomocą, uzyskano niedawno kompletny konektom mózgu małej rybki o nazwie Danio pręgowany [Ref]. Zobrazowanie tą metodą i zrekonstruowania konektomu jednego milimetra sześciennego tkanki mózgowej stawia sobie za cel, rozpoczęty w 2016-tym roku,  projekt MICrONS. Patrząc bardziej w przyszłość, osiągnięcie AGI, otworzy drogę do tak zwanej superinteligencji (Artificial Super Intelligence – ASI), przekraczającej ludzkie możliwości umysłowe.

7. Internet kwantowy 

Internet kwantowy to hipotetyczna globalna sieć kwantowa (ang. quantum network), która pozwoli w przyszłości na wymianę informacji kwantowej, w szczególności pomiędzy komputerami kwantowymi (o których pisałem w punkcie 1 ). Czym faktycznie okaże się kwantowy internet i jakie będzie jego znaczenie, tego jeszcze nie wiemy. Pierwszym zaś etapem jego tworzenia, rozwijanym obecnie, jest kwantowa dystrybucja klucza (KDK).  Kwantowa dystrybucja klucza jest,

qkd_product_small
Zestaw do kwantowej dystrybucji klucza. Źródło

rozważaną w ramach kryptografii kwantowej  metodą bezpiecznego przesyłania klucza za pośrednictwem stanów kwantowych pojedynczych fotonów. Metoda ta wykorzystuje własności mechaniki kwantowej (w szczególności tak zwane twierdzenie o zakazie klonowania) do przesyłania klucza, który zostanie później wykorzystany do zaszyfrowania i odszyfrowania przesyłanej już przez kanał klasyczny informacji.  Kwantowa dystrybucja klucza jest rozwiązaniem,  które zostało wdrożone do komercyjnego użytku.  Na zdjęciu powyżej można zobaczyć przykładowy zestaw do KDK. Dostępne jednakże obecnie rozwiązania posiadają jedno kluczowe ograniczenie. Mianowicie, jest to dystans, na który możemy przesłać zabezpieczoną kwantowo informację. Wiąże się to z tłumieniem fotonów w światłowodzie i koniecznością stosowania skomplikowanych tzw. powielaczy kwantowych. Obiecującym rozwiązaniem tego problemu jest przesyłanie fotonów z zakodowaną informacją kwantową poprzez atmosferę oraz przestrzeń kosmiczną. Udane próby interkontynentalnej KDK z wykorzystaniem kwantowych technologii satelitarnych udało się przeprowadzić w 2017-tym roku, co dyskutuję we wpisie Kwantowa łączność satelitarna. Obecnie trwają prace nad kilkoma projektami satelitarnymi które mają na celu rozwój kwantowych technologii związanych z łącznością satelitarną. Stworzenie podwalin dla internetu kwantowego to również jeden z filarów, rozpisanego na okres dziesięciu lat (2018-2028), flagowego programu Komisji Europejskiej Quantum Flagship.

8. Nowa energetyka jądrowa 

Technologiczny rozwój naszej cywilizacji wymaga coraz większej ilości energii. Popyt ten jest dzisiaj wciąż w dużej mierze zaspokajany przez paliwa kopane, spalanie których niesie jednak negatywne skutki dla jakości powietrza oraz prowadzi do zmian klimatycznych. Odnawialne źródła energii takie jak fotowoltaika i farmy wiatrowe dostarczają jedynie częściowego rozwiązania tego problemu. Przeszkodą w ich rozwoju jest problem magazynowania energii, który jednakże może być w dużym stopniu

41809720041_48b2f2d53f_b
Plac budowy reaktora termojądrowego ITER. Źródło

przezwyciężony stosując takie rozwiązania jak systemy power-to-gas czy też poprzez redukcję strat na przesyle energii na duże odległości (np. stosując w przyszłości nadprzewodzące sieci transmisyjne). Duże nadzieje związane z zapewnieniem stabilnego źródła energii (zarówno elektrycznej jak i cieplnej) niosą nowe rozwiązania w obszarze energetyki jądrowej. Wymarzonym źródłem energii jest kontrolowana reakcja syntezy (fuzji) termojądrowej.  Obecnie we francuskiej Prowansji trwa budowa eksperymentalnego reaktora ITER, mającego rozpocząć pierwsze eksperymenty z plazmą w połowie nadchodzącej dekady. Do 2035-tego roku planowane jest natomiast osiągnięcie generacji mocy rzędu 1GW (tyle samo co w typowym bloku elektrowni) i samo-podtrzymywanie plazmy przez nawet 1000 sekund. Jeśli projekt zostanie zwieńczony sukcesem, na jego kanwie ma zostać uruchomiony (prawdopodobnie w latach 2050-2060) pierwszy komercyjny blok termojądrowy o nazwie DEMO. Są to jednak odległe perspektywy. Dużo realniejsze w nadchodzącej dekadzie może natomiast stać się wykorzystanie nowych typów reaktorów bazujących nie na syntezie lecz na, stosowanym obecnie w elektrowniach atomowych, rozpadzie jądrowym.  Chodzi mianowicie o tak zwane reaktory jądrowe IV generacji, których bardzo obiecującym  przykładem (w perspektywie najbliższej dekady) jest reaktor wysokotemperaturowy chłodzony gazem (HTRG – High Temperature Gas-cooled Reactor).   Reaktory HTRG pozwalają na bezpieczną i bezemisyjną generację dużych ilości ciepła, znajdującego zastosowanie w przemyśle ciężkim, np. do wytopu żelaza. Ponadto, odbiorcą ciepła może być proces wytwarzania wodoru do zasilania ogniw paliwowych znajdujących zastosowanie w elektromobilności, dyskutowanej w punkcie 9. W przeciwieństwie do standardowych elektrowni jądrowych, reaktory HTRG o mocy rzędu 200 MW mają konstrukcję modułową i można je w znacznym stopniu budować w fabryce po czym integrować w miejscu przeznaczenia (np. na terenie huty).

9. Elektromobilność 

Samochody elektryczne przez wiele lat wydawały się mrzonką. Powstające prototypy były raczej ciekawostką i mało kto na poważnie brał pod uwagę możliwość tego, że za jego życia elektrycznie napędzane samochody zaczną królować na drogach i sama/sam zasiądzie za kierownicą jednego z nich. Wszystko jednak zmieniło się w przeciągu  kilku ostatnich lat,

www.helgilibrary
Prognoza rocznej sprzedaży aut elektrycznych. Źródło

głównie za sprawą pojazdów firmy Tesla.  W samym 2018-tym sprzedaż samochodów elektrycznych w USA zanotowała wzrost na poziomie 81 %, osiągając 2.1 % procent rynku samochodów w tym kraju. Globalny udział samochodów elektrycznych na koniec 2018-tego roku to zaś już 4.6%. Najwięcej z nich sprzedaje się w Chinach, gdzie liczba ta przekroczyła już roczną sprzedaż miliona sztuk. Jak wskazuje raport z 2016-tego roku, przygotowany przez Helgi Library, do końca 2030-tego roku około 20% sprzedawanych samochodów będą stanowiły samochody elektryczne. Będzie się to przekładało na sprzedaż około 20 milionów sztuk rocznie.  Otrzymane jednak w latach 2017-2018 wzrosty przewyższają prognozy na te lata. W konsekwencji, jak wskazują aktualniejsze analizy, poziom 20% w USA może zostać osiągnięty już w 2025-tym roku. Kluczowym czynnikiem który zadecyduje o adaptacji samochodów elektrycznych będzie ich cena. Od strony osiągów, samochody te już nie tylko dorównują tym konwencjonalnym, a wręcz w wielu aspektach są od nich lepsze (np. przyśpieszenie). Cena  w dużym stopniu uzależniona jest od kosztów baterii. Technologa która jest tu głównie stosowana to akumulatory litowo-jonowe (Li-Ion). Sztandarowy produkt Tesli Model S w wersji o pojemności 85kWh posiada matrycę 7104 akumulatorów o rozmiarach nieco większych od bateria AA każdy.  Rosnący popyt na akumulatory litowo-jonowe mają zaspokoić, między innymi, powstające giga fabryki (Gigafacory).  Ich pracę mogą jednak zakłócić ceny kluczowych do wytworzenie akumulatorów Li-Ion pierwiastków – litu i kobaltu. Notowania tych surowców odnotowały w ostatnich latach bardzo dynamiczny wzrost. Jednak baterie do samochodów to nie tylko problem kosztów ich wytworzenia, ale również ich recyklingu. Alternatywą dla akumulatorów mogą zaś okazać się ogniwa wodorowe. Z pewnością, rozwój elektromobilności dokona rewolucji rynku samochodowego oraz takich obszarów jak serwisowanie pojazdów. Warte podkreślenia jest to, że równolegle do rozwoju elektromobilności opracowywane i wdrażane są rozwiązania związane z autonomicznością pojazdów (oparte m.in. o wąską sztuczną inteligencję, dyskutowaną w punkcie 6 oraz nawigację satelitarną – punkt 2).   Połączenie tych dwóch elementów dokona w nadchodzącej dekadzie transformacji motoryzacji, a nazwa “samochód” nabierze nowego znaczenia.  Rosnąca rola bezemisyjnych samochodów elektrycznych będzie miała istotne znaczenie dla ograniczenia emisji gazów cieplarnianych i zanieczyszczeń do atmosfery.

10. Kolej próżniowa 

W sierpniu 2013-tego roku grupa inżynierów z firm Tesla i SpaceX, pod kierownictwem Elona Muska, przedstawiła koncepcję nowego środka transportu, określonego mianem hyperloop.  Założenia stojące za tym rozwiązaniem oraz  wstępne studium wykonalności  zawarto w raporcie Hyperloop Alpha.   Idea hyperloop polega na transporcie kapsuły (z pasażerami lub towarami) w rurze z obniżonym ciśnieniem, co ma na celu

image_04
Testowa linia kolei próżniowej firmy Hyperloop One. Źródło

zredukowanie oporu aerodynamicznego. Zakłada się, że kapsuła mogłaby poruszać się z prędkościami osiągającymi prędkości dźwięku, co stanowiłoby realną konkurencję dla komunikacji lotniczej na odległościach subkontynentalnych. Niezwykle ważne jest również to, że hyperloop wykorzystując jedynie energię elektryczną jest rozwiązaniem bezemisyjnym. Jego rozwój, jako alternatywy dla nieekologicznego ruchu lotniczego, jest więc ważny z punktu widzenia ograniczania emisji dwutlenku węgla do atmosfery.  Nad wdrożeniem technologii hyperloop pracuje obecnie kilka firm, wśród których wiodącą rolę odgrywają Hyperloop One i Hyperloop Transportation Technologies. W Polsce ideę hyperloop rozwija startup Hyperloop Poland. Wdrożenie hyperloop jako środka transportu stawia szereg wyzwań zarówno natury inżynieryjnej jak i ekonomicznej. Problemem technicznym jest, w szczególności, kwestia kompresji powietrza w przedniej części kapsuły i związany z tym wzrost ciśnienia, hamujący ruch samej kapsuły. Efekt ten zaczyna być szczególnie dokuczliwy gdy prędkość kapsuły osiąga prędkość dźwięku, uniemożliwiając cząsteczkom powietrza opływ kapsuły poprzez obszar pomiędzy wewnętrzną powierzchnią rury, a powierzchnią kapsuły.  Zjawisko to wiąże się z istnieniem tak zwanej granica Kantrowitza (ang. Kantrowitz limit), która zadaje maksymalną prędkość z jaką może poruszać się obiekt dla określonego stosunku przekroju tego obiektu względem przekroju poprzecznego rury.  Rozwiązaniem problemu wzrostu ciśnienia powietrza w przedniej części kapsuły jest zastosowania kompresora, który odpompowuje nadmiar powietrza do tylnej części kapsuły. Rozwiązanie takie ma jeszcze jedną zaletę; mianowicie, odprowadzane powietrze może zostać użyte do utrzymania kapsuły na wytworzonej poduszce powietrznej, jak w przypadku poduszkowca. Zastosowanie lewitacji (w tym przypadku ciśnieniowej) jest kluczowe do zredukowania tarcia pomiędzy kapsułą, a tubą. Alternatywnie, rozważane jest zastosowanie lewitacji magnetycznej, jak np. w szanghajskim Maglevie. Wykorzystanie takiego rozwiązania jest jednak dużo kosztowniejsze i wymaga większego zasilania (chyba, że zastosowane zostaną magnesy stałe).  Budowa od podstaw infrastruktury Hyperloop to ogromne wyzwanie ekonomiczne i planistyczne, jednakże już dzisiaj zapadają pierwsze decyzje dotyczące planów budowy instalacji kolei próżniowej.

11. Lab-on-a-chip

Wykonując ilościowe badania mikrobiologiczne standardowymi metodami musimy liczyć się z tym że, na ich wyniki będziemy musieli czekać przynajmniej 24 godziny, a w przypadku niektórych patogenów (np. grzyby) nawet kilka-kilkanaście dni. Wynika to z faktu, iż dla klasycznych posiewów na szalce Petriego należy inkubować kolonie komórkowe do czasu aż osiągną one makroskopowe rozmiary, pozwalające na zliczenie ich liczby gołym okiem. Ta skrajnie archaiczna metoda, nie przystająca do współczesnych realiów, jest jednak wciąż najpowszechniejszym sposobem analizy mikrobiologicznej zarówno w  diagnostyce medycznej jaki i w przemyśle spożywczym, farmaceutycznym i kosmetycznym. Sytuacja ta ma jednak szansę ulec zmianie za sprawą rozwiązań typu lab-on-a-chip, czyli miniaturowych systemów analitycznych. Układy tego typu mogą np. wykrywać i zliczać pojedyncze bakterie, eliminując konieczność długotrwałego oczekiwania na wyniki

shutterstock_311155133-1068x601
Przykład mikrofluidycznego układu lab-on-a-chip. Źródło

badań mikrobiologicznych (wymagających odczekania kilkunastu/kilkudziesięciu cykli podziałów komórek).  Układy lab-on-a-chip zazwyczaj wykorzystują rozwiązania mikroprzepływowe (tzw. układy mikrofluidyczne) pozwalające na przeprowadzanie reakcji chemicznych czy też biochemicznych, operując na objętościach płynów rzędu mikro litrów lub mniejszych. Układy tego typu wykonuje się zazwyczaj metodami litograficznymi w płytce ze szkła akrylowego (zdjęcie powyżej). Szczególną klasą systemów mikroprzepływowych są modele organów tzw. organ-on-a-chip. Przykładu rozwiązania lab-on-a-chip dostarczają również miniaturowe układy do sekwencjonowania DNA, wspomniane w punkcie 4. Miniaturyzacja i obniżenie kosztu układów diagnostycznych doprowadzi do ich szerokiego rozpowszechnienia. Będzie to miało duże znaczenie dla podniesienia poziomu diagnostyki medycznej w rozwijających się rejonach świata. Układy lab-on-a-chip  nie tylko (jako np. przystawki do smartfonów) trafią do naszych domów ale również umożliwią prowadzenie badań biomedycznych w warunkach kosmicznych, co już ma miejsce. Połączenie rozwiązań nanosatelitarnych (dyskutowanych w punkcie 2) z układami  lab-on-a-chip  może, w szczególności, dostarczyć metody opracowywania leków dedykowanych dla przyszłych kosmicznych eksploratorów [Ref].

12. Blockchain 

Blockchain to rozproszona baza danych (księga rachunkowa) nie posiadająca centralnej jednostki autoryzującej. Pomimo, że koncepcja ta była znana już wcześniej, szerokie zastosowanie znalazła dzięki kryptowalucie Bitcoin, której założenia zostały przedstawione w 2009-tym roku w pracy Bitcoin: A Peer-to-Peer Electronic Cash System. Wprowadzenie Bitcoina pociągnęło za sobą utworzenie wielu konkurencyjnych kryptowalut, których (na giełdach kryptowalut) notowanych jest już kilka tysięcy.  Funkcjonowanie Blockchainu wymaga zastosowania szeregu rozwiązań kryptograficznych, zapewniających poprawne funkcjonowanie systemu. Są to zarówno

untitled-design
Popularne kryptowaluty oparte o technologię Blockchain. Źródło

podpis elektroniczny, wykorzystywany do uwierzytelniania transakcji,  jak i funkcje haszujące mające zastosowanie do tworzenia adresów bloków oraz w procesie tzw. kopania (mining). Kopanie jest związane z metodą nagradzania osób, które angażują się w podtrzymywanie Blockchainu, co jest niezbędne do jego funkcjonowania. W przypadku Bitcoina,  stosowana jest funkcja haszująca SHA-256, która jest bardzo powszechnie wykorzystywana w zabezpieczaniu np. wymiany informacji w internecie (kliknij na kłódkę w przeglądarce w pasku adresu tej strony i zwróć uwagę na szczegóły certyfikatu TLS). Proces kopania, czyli poszukiwania rozwiązania zadania opartego o przeszukiwanie dziedziny funkcji haszującej, jest jednak zadaniem bardzo żmudnym i wymagającym ogromnych mocy obliczeniowych. Tylko w przypadku Bitcoina (jak wskazuje Bitcoin Energy Consumption Index) roczna konsumpcja energii elektrycznej wynosi około 50 TWh, co przekłada się na średnią pobieraną moc 5,7 GW. Jest to porównywalne z mocą pięciu elektrowni atomowych lub całkowitym zapotrzebowaniem na energię elektryczną Singapuru. Ponieważ energia ta pochodzi jednak w głównej mierze z elektrowni węglowych, tak duża konsumpcja energii rodzi obawy związane z emisją dwutlenku węgla i jego negatywnego wpływu na klimat [Ref].  Problem ten będzie musiał znaleźć rozwiązanie w przyszłych implementacjach technologii Blockchain. Kolejnym problemem, jaki stoi przed stabilnością rozwiązań opartych o Blockchain jest kwestia podatności na ataki na wykorzystane rozwiązania kryptograficzne. Kwestię tę dyskutuję dokładniej we wpisie Kryptowaluty-Kwanty-Kosmos. Rzecz mianowicie dotyczy nowych możliwości zarówno rekonstrukcji kluczy prywatnych (w tzw. kryptografii asymetrycznej) jak i przeszukiwania dziedzin funkcji haszujących, jakich dostarczą komputery kwantowe, dyskutowane w punkcie 1.  Przyszłe implementacje Blockchainu będą wymagały zastosowania klasycznych algorytmów kryptograficznych nie podatnych na ataki kwantowe. Algorytmy takie są dzisiaj opracowywane w ramach tak zwanej kryptografii postkwantowej.  Ponadto, rozwój internetu kwantowego (dyskutowanego w punkcie 7) pozwoli na wprowadzenie Blockchainu opartego o kwantową dystrybucję klucza. Prace nad kwantowo zabezpieczoną wersją Blockchainu są już obecnie prowadzone [Ref]. Warto na koniec podkreślić, że Blockchain ma zastosowanie nie tylko w obszarze finansowym. Do przyszłych pól implementacji tej technologii możemy zaliczyć m.in.: przechowywanie danych medycznych, ubezpieczenia, zarządzanie infrastrukturą IoT, elektroniczne zawieranie umów, księgi wieczyste, kontrola nad prawami do utworów artystycznych oraz zarządzanie łańcuchami dostaw.

© Jakub Mielczarek

Kryptowaluty-Kwanty-Kosmos

Świat zachłysnął się cyfrowym złotem – kryptowalutami. Bitcoin i technologia Blockchain stały się, w mgnieniu oka, częścią naszej codzienności. Choć jeszcze dosłownie kilka lat temu były to nazwy znane głównie entuzjastom nowych technologii oraz postępowym inwestorom. Obecnie, zainteresowanie rynkiem kryptowalut jest ogromne,   a sięgające nawet kilkuset procent w skali roku wzrosty kursów kryptowalut wabią  okazją zbicia fortuny.

Nie mniej emocji dostarcza nam obecny renesans w eksploracji kosmosu (tzw. NewSpace). Takie momenty jak symultaniczne lądowanie odzyskiwanych po stracie rakiety Falcon Heavy stopni pomocniczych to sceny niczym z filmów science fiction. Spektakularność tych wyczynów pobudza wyobraźnię nie tylko pasjonatów kosmosu, ale i inwestorów, przyśpieszając otwarcie przestrzeni kosmicznej dla coraz ambitniejszych wyzwań. Trochę w cieniu Blockchainu i NewSpace, rozgrywa się obecnie jeszcze jedna niezwykle ważna technologiczna rewolucja, nie robiąca może tyle huku co start rakiety ani nie hipnotyzująca tak jak cyfrowe złoto, ale za to gruntownie transformująca informacyjną tkankę naszego świata. Chodzi mianowicie o przeskok od obecnej fazy przetwarzania informacji klasycznej (bity) do epoki informacji kwantowej (qubity).  Nowe technologie kwantowe, bo za ich sprawą  ma to miejsce, wpłyną na dalszy rozwój zarówno kryptowalut jak i technologii kosmicznych. Możemy sformułować nawet śmielszą tezę: rozwiązania, które zrodzą się na przecięciu tych trzech obszarów (kryptowalut, technologii kwantowych i eksploracji kosmosu), zrewolucjonizują każdy z nich z osobna jak i wygenerują zupełnie nową jakość.

Ale po kolei. Kryptowaluty opierają się na rozproszonym systemie księgowym typu peer-to-peer, zaproponowanym w artykule Bitcoin: A Peer-to-Peer Electronic Cash System. W rozwiązaniu takim, w przeciwieństwie do standardowych systemów finansowych, nie istnieje centralny podmiot autoryzujący, np. bank. Poprawność obrotu kryptowalutą zapewniona jest natomiast poprzez decentralizację oraz szereg zabezpieczeń kryptograficznych. Należy do nich, w szczególności, podpis elektroniczny za pomocą którego składane są dyspozycje transakcji.  Jest to przykład tak zwanej kryptografii asymetrycznej, w której istnieją dwa typy klucza: prywatny oraz publiczny. Wykonanie transakcji wiąże się z podpisaniem, za pomocą klucza prywatnego, dyspozycji transakcji  i następnie jej autoryzowanie przez innych użytkowników sieci, na postawie znajomości klucza publicznego. Dokładnie tak samo jak w przypadku składania podpisu elektronicznego. Siła takiego zabezpieczenia opiera się na dużej złożoności obliczeniowej związanej z odtworzeniem postaci klucza prywatnego na podstawie znajomości klucza publicznego.  W przypadku Bitcoina, wykorzystywany jest w tym celu algorytm ECDSA (Elliptic Curve Digital Signature Algorithm). Jest on odporny na ataki prowadzone przez komputery klasyczne. Natomiast, okazuje się, że dla uniwersalnych komputerów kwantowych problem ten przestaje być aż tak trudny. Mianowicie, do znalezienia klucza prywatnego (w kryptografii bazującej na ECDSA) możliwe jest zastosowanie zmodyfikowanego kwantowego algorytmu faktoryzacji Shora. Niedawna publikacja Quantum attacks on Bitcoin, and how to protect against them sugeruje, że postęp w rozwoju komputerów kwantowych może umożliwić łamanie obecnych zabezpieczeń opartych o ECDSA już za niespełna 10 lat.

Utrzymanie zdecentralizowanej struktury Blockchainu, na której opary jest Bitcoin, wymaga pracy tak zwanych górników (minerów). Zapłatą za wkład ich mocy obliczeniowej w utrzymywanie systemu są Bitcoiny. Żeby jednak je otrzymać, należy rozwiązać zadanie oparte o tak zwaną funkcję haszującą SHA-256, opracowaną przez National Security Agency. W celu rozwiązania zadania, konieczne jest zbadanie wartość funkcji haszujacej dla bardzo dużej ilości różnych wartości jej argumentu. Jest to, dla komputerów klasycznych, niezwykle żmudne zadanie (energia elektryczna przeznaczana obecnie na tę czynność, tylko w przypadku Bitcoinu, wynosi w skali roku ponad 70 TWh, co jest porównywalne z konsumpcją energii elektrycznej Austrii). Okazuje się jednak, że zadanie to jest jednym z tych z którymi doskonale radzą sobie algorytmy kwantowe. Otóż, można w tym przypadku wykorzystać jeden z najbardziej znanych algorytmów kwantowych, tak zwany algorytm Grovera. Pozwala on zredukować złożoność obliczeniową procesu poszukiwania argumentu funkcji haszującej do pierwiastka kwadratowego z liczby dozwolonych argumentów.

Możemy  więc dojść do wniosku, że rozwój technologii kwantowych, w szczególności uniwersalnych komputerów kwantowych (takich jak np. IBM Q), stanowi zagrożenie dla zabezpieczeń na których opierają się obecne kryptowaluty. Z drugiej strony jednak, technologie kwantowe pozwalają również ulepszyć systemy takie jak Blockchain. Miedzy innymi,  klasyczne zabezpieczenia kryptograficzne mogą zostać zastąpione przez odpowiednie rozwiązania kryptografii kwantowej.  Do najważniejszych z nich należą: kwantowe generatory kluczy oraz tak zwana Kwantowa Dystrybucja Klucza (KDK).

KDK opiera się na takich własnościach mechaniki kwantowej jak zaburzenie stanu układu kwantowego poprzez pomiar i tak zwany zakaz klonowania stanów kwantowych.  Na tej podstawie, protokoły kwantowej dystrybucji klucza są w stanie wykryć każdą próbę wykradzenia informacji. Stanowią więc wręcz idealną metodę zabezpieczenia wymiany klucza prywatnego, eliminując tym samym potrzebę stosowania kryptografii asymetrycznej.  Warto podkreślić, że KDK osiągnęła poziom technologii dostępnej komercyjnie. Jednakże, jej stosowanie na dużych odległościach (rzędu kilkuset kilometrów) wciąż stanowi wyzwanie. Wiąże się to z koniecznością przesyłania pojedynczych fotów, w których stanach kwantowych zakodowany jest klucz prywatny. Można w tym celu zastosować światłowód. Nie jest to jednak rozwiązanie optymalne gdyż, z uwagi na zakaz klonowania stanów kwantowych, wzmacnianie sygnału przesyłanego tą drogą jest trudnym zadaniem. Żeby zniwelować straty w przesyłanym sygnale, niezbędne jest zastosowanie tak zwanych kwantowych powielaczy, realizujących protokół teleportacji kwantowej. Z uwagi na złożoność techniczną takiego rozwiązania, dużo łatwiejsze okazuje się przesyłanie pojedynczych fotonów w powietrzu lub w próżni. W konsekwencji, jedyny dostępny dzisiaj sposób przeprowadzania kwantowej dystrybucji klucza na odległościach międzykontynentalnych opiera się na wykorzystaniu przestrzeni kosmicznej.

Prace nad takim rozwiązaniem prowadzono już od dłuższego czasu. Ostatecznie, udało się tego dokonać w ubiegłym roku przez chińsko-austriacki zespół naukowców i inżynierów. Wyniki przeprowadzonej na dystansie 7600 km, pomiędzy stacjami w Chinach i Austrii, kwantowej dystrybucji klucza opublikowano w styczniu bieżącego roku na łamach Physical Review Letters [arXiv:1801.04418]. Do zrealizowania kwantowej transmisji wykorzystano satelitę Micius, stanowiącą jednostkę zaufaną dystrybuującą klucz prywatny w protokole BB84 (Bennett-Brassard 1984).  Szczegóły tego eksperymentu omawiam w artykule Kwantowa łączność satelitarna

Sukces chińskiego projektu dowodzi możliwości globalnego wykorzystania kwantowych protokołów kryptograficznych.  Otwiera on również drogę do dalszego rozwoju tej technologii, zarówno do celów militarnych jak i komercyjnych. Jedną z niewątpliwie najbardziej fascynujących możliwości jest stworzenie tak zwanego kwantowego internetu

Kwantowy internet zapewni bezpieczeństwo pracy systemów finansowych. W szczególności, umożliwi rozszerzenie technologii  Blockchain do przypadku kwantowego (zabezpieczanego przez KDK). Propozycja takiej modyfikacji technologii Blockchain została niedawno opisana w artykule Quantum-secured blockchain. Internet kwantowy umożliwi również wdrożenie pochodnych do dyskutowanych już na początku lat osiemdziesiątych koncepcji kwantowego pieniądza.  W szczególności, takich jak propozycja Weisnera, w której pieniądz jest pewnym stanem kwantowym (np. sekwencją qubitów). Niepodrabialność kwantowego banknotu wynika wprost z zakazu klonowania (nieznanego) stanu kwantowego. Warto zaznaczyć, że realizacja kwantowego pieniądza opartego o propozycję Weisnera została doświadczalnie zademonstrowana w 2016-tym roku przez polsko-czeski zespół fizyków kwantowych i opisana w artykule Experimental quantum forgery of quantum optical moneyopublikowanym w Nature.  Po więcej informacji na temat kwantowych pieniędzy zachęcam sięgnąć do artykułu Quantum Money.

Quantum-banknote
Kwantowy banknot Weisnera zawierający nieznany użytkownikowi stan kwantowy (np. sekwencja qubitów) oraz numer seryjny. Weryfikacja banknotu (zgodność stanu kwantowego z nadanym numerem seryjnym) następuje poprzez jego przesłanie do  instytucji emitującej (mennicy). Źródło

Kwantowo zabezpieczone kryptowaluty czy też kwantowe pieniądze będą mogły, dzięki satelitarnemu internetowi kwantowemu, tworzyć globalny system walutowy. Dzięki wykorzystaniu i tak już stosowanej do tego celu przestrzeni kosmicznej, nie będzie stanowiło żadnego problemu by rozszerzyć obszar obejmowany kwantową siecią poza powierzchnię Ziemi. Nie ma przecież lepszego medium do przesyłania stanów kwantowych niż próżnia.  

Ludzie przebywający w kosmosie, czy to na orbicie okołoziemskiej czy też w planowanych stacjach na Księżycu oraz na Marsie, będą mogli dokonywać płatności korzystając z kwantowo zabezpieczonych kryptowalut. Będą oni mogli korzystać również z pozafinansowych zastosowań kwantowej wersji technologii Blockchain, np. w telemedycynie. 

Od strony możliwości technicznych, takie wizje stają się dzisiaj jak najbardziej wykonalne. Idąc dalej, naturalnym wydaje się wykorzystanie w przyszłości przestrzeni kosmicznej jako miejsca do przechowywania i przetwarzania informacji kwantowej. Stany kwantowe, będące nośnikiem informacji kwantowej ulegają, poprzez oddziaływanie ze środowiskiem, dekoherencji która stanowi jedną z największych przeszkód w rozwoju technologii kwantowych. Warunki wysokiej próżni i niskich temperatur, redukujące proces dekoherencji, powszechnie występują w przestrzeni kosmicznej.  Z tego powodu, możliwe jest więc, że przyszłe centra przetwarzania i magazynowania informacji kwantowej, np. skarbce kwantowych pieniędzy, będą ulokowane nie na Ziemi lecz ukryte zostaną w takich miejscach jak jaskinie lawowe na Księżycu.   

© Jakub Mielczarek

Rock et Science

Fundamentem każdej odpowiednio zaawansowanej technologii są nauki podstawowe. Niestety jednak, umiejętność posługiwania się nowymi zdobyczami techniki powszechnie nie idzie w parze ze zrozumieniem zasad ich funkcjonowania. I nie chodzi mi tu o szczegóły techniczne danego urządzenia, znajomość tych jest przeciętnemu użytkownikowi zbyteczna, lecz o ideę, na której dane rozwiązanie się opiera. A to uważam jest istotne, chociażby po to, by we współczesnym technologicznym świecie nie czuć się zdezorientowanym i móc w pełni czerpać z jego dobrodziejstw. Dla przykładu, tak prosta rzecz jak żarówka. Przez lata, intuicyjne rozumienie jej działania nie stanowiło dla nikogo większego problemu. Jednakże dzisiaj, “żarówka”  to już najczęściej nie lampa żarowa lecz lampa LED.  Bez wątpienia, odsetek osób rozumiejących zasadę emisji światła z lampy LED (rekombinacja promienista par elektron-dziura w półprzewodnikowym złączu p-n) jest dużo niższy niż to miało miejsce w przypadku standardowych lamp żarowych (promieniowanie termiczne rozgrzanej przez przepływ prądu skrętki).

To właśnie chęć przyczynienia się do zmiany tego stanu rzeczy była jednym z zamysłów które skłoniły mnie do podjęcia się prowadzenia tego bloga. Wyszedłem z założenia, iż sytuację tę można niejako obrócić na korzyść nauk podstawowych. Bo przecież, chęć (czy też potrzeba) zrozumienia otaczających nas technologii stanowi doskonały punkt wyjścia do głębszej refleksji nad zasadami stojącymi za ich funkcjonowaniem. W ten sposób, możemy dzisiaj stosunkowo łatwo dotrzeć do fundamentalnych koncepcji naukowych oraz praw natury, których przyswojenie, bez technologicznego kontekstu byłoby znacznie trudniejsze i dla wielu z nas mniej ciekawe.  W części z moich kolejnych wpisów będę starał się podążać tą ścieżką, biorąc “na warsztat”  nowoczesne technologie i odsłaniając ich naukowy rdzeń.

Jednymi z tych technologii które powszechnie uważane są szczególnie trudne, są technologie rakietowe. Inżynierię rakietową (ang. rocket science) przyjęło się wręcz traktować jako synonim czegoś niezwykle skomplikowanego. Wbrew tej opinii, podstawy fizyczne działania rakiet są stosunkowo proste.

Ponieważ żyjemy w czasach niezwykłego ożywienia w obszarze eksploracji kosmosu (tzw. NewSpace) a media zalewają nas doniesieniami o startach nowych rakiet, eksploracji Marsa i nadchodzącej erze turystyki kosmicznej, podstawy rocket science najzwyczajniej warto znać. Wychodząc naprzeciw tej potrzebie, poniżej, postaram się podsumować najistotniejsze aspekty fizyczne działania rakiet. Swoją uwagę skoncentruję tutaj na najpopularniejszym typie rakiet kosmicznych, wykorzystującym chemiczne silniki rakietowe.

W największym uproszczeniu, rakieta porusza dzięki wyrzucanym z silnika rakietowego gazom spalinowym. Działa tu efekt odrzutu, będący konsekwencją zasady zachowania pędu. Rakieta zyskuje pęd równy co do wartości i kierunku, lecz o przeciwnym zwrocie do pędu wyrzucanych spalin. Im większa prędkość wyrzucanego gazu, tym też większy jest jego pęd. Do osiągnięcia odpowiedniej prędkości rakiety, ważne jest by gazy spalinowe wyrzucane były z rakiety odpowiednio szybko, a to (w chemicznym silniku rakietowym) osiągane jest przez kontrolowany proces spalania mieszanki paliwowej w komorze spalania. Najpopularniej wykorzystywanym paliwem w przypadku rakiet na paliwo ciekłe są obecnie nafta, ciekły wodór oraz ciekły metan (fazy ciekłe mają dużo większą gęstość energii). Jako utleniacza (który jest niezbędny w celu osiągnięcia odpowiedniego tempa spalania) wykorzystywany jest natomiast skroplony tlen. Zachodząca w komorze spalania reakcja generuje ogromną temperaturę i ciśnienie. Przewężenie (ang. throat), pomiędzy komorą spalania a dyszą wylotową (ang. nozzle) to natomiast (zgodnie z równaniem Bernoulliego) miejsce w którym spada ciśnienie gazów, jego prędkość zaś szybko wzrasta (w kierunku dyszy), osiągając wartości supersoniczne. Wynika to z różnicy ciśnień pomiędzy komorą spalania a dyszą. Opisaną tu sytuację obrazuje poniższy schemat:

Rakieta

Przejdźmy teraz do podstawowych rozważań ilościowych. Będziemy musieli w tym celu posłużyć się elementami rachunku różniczkowego i całkowego. Czytelnika niezaznajomionego z tym działem matematyki zachęcam do szybkiego przyswojenia niezbędnej wiedzy w oparciu o Kurs Analizy Matematycznej na Khan Academy.

Oznaczmy przez M masę rakiety a przez m masę wyrzucanych produktów spalania. Tak, że rozważając infinitezymalne zmiany mas możemy zapisać dM = - dm. Przez v oznaczmy natomiast prędkość rakiety (dla uproszczenia rozważamy ruch w jednym kierunku). Dla uproszczenia przyjmijmy ponadto, że czynnik roboczy wyrzucany jest z silnika rakiety ze stałą, względem rakiety, prędkością u. Przy tym założeniu, postarajmy się teraz wyznaczyć zmianę prędkości rakiety w rezultacie wyrzucenia produktów spalania o masie dm.

W tym celu, rozważmy sytuację w której w chwili t_1 znajdujemy się w układzie spoczynkowym rakiety, w którym jej prędkość (v) jaki i pęd (p = Mv) są równe zeru. W infinitezymalnym przedziale czasu dt (czyli do chwili t_2=t_1+dt) nastąpił wyrzut masy dm, co spowodowało obniżenie masy rakiety do wartości M-dm oraz wzrost jest prędkości od zera do dv. Wyrzucane produkty spalania zyskują natomiast pęd u dm. W konsekwencji, zmianę pędu dp całego układu (rakieta oraz wyrzucane produkty spalania) możemy zapisać jako przyrost pędu rakiety pomniejszony o pęd wyrzucanych gazów:

dp=(M-dm)dv-udm.

Pomijając wyraz wyższego rzędu dm dv  (dm jest infinitezymalnie małe, można je więc zaniedbać względem skończonego M), otrzymujemy poszukiwane wyrażenie:

dp=Mdv-udm.   (1)

Druga zasada dynamiki Newtona mówi nam, że zmiana pędu w czasie równa jest sile:

\frac{dp}{dt}=F.   (2)

W przypadku braku działania na układ sił zewnętrznych (F=0) nie następuje zmiana jego pędu (dp=0). W sytuacji takiej spełniona jest zasada zachowania pędu którą, w rozważanym przypadku, możemy wyrazić poprzez równanie:

Mdv=udm,  (3)

będące bezpośrednią konsekwencję równania (1). Przypadek z niezerową siłą (na przykład działającą na rakietę i gazy wylotowe siłą grawitacji lub/i siłą oporu aerodynamicznego) pozostawiamy Czytelnikowi do samodzielnej analizy. My zaś przejdźmy do prześledzenia konsekwencji równania (3):

Równanie Ciołkowskiego. Wykorzystując wyprowadzoną z zasady zachowania pędu zależność (3), czyli M  dv = u dm, oraz relację dm = -dM otrzymujemy:

dv = - u \frac{dM}{M}.

Całkując to wyrażenie w przedziale od masy początkowej M_1 do masy końcowej rakiety M_2 uzyskujemy wyrażenie na całkowitą zmianę prędkości rakiety:

\Delta v = v_2-v_1 = \int_{v_1}^{v_2}dv= - u \int_{M_1}^{M_2} \frac{dM}{M} =  u  \ln \left(\frac{M_1}{M_2}\right).   (4)

Jest to sławny wzór Ciołkowskiego, opisujący zmianę prędkości rakiety \Delta v spowodowaną wyrzutem masy ze stałą prędkością u, od wartości M_1 do M_2. Jako przykład zastosowania, wykorzystajmy równanie (4) do oszacowania ilości paliwa jakie należy spalić w rakiecie żeby osiągnąć pierwszą prędkość kosmiczną, czyli prędkość jaką musi zyskać rakieta aby mogła orbitować na niskiej orbicie okołoziemskiej. Prędkość ta wynosi v_I = \sqrt{\frac{G M_z}{R_z}} \approx  7,9 \frac{km}{s} \approx 7900 \frac{m}{s}, gdzie G to stała grawitacji, M_z to masa Ziemi a R_z to promień Ziemi. Typowe prędkości wyrzutu produktów spalania w rakietach na paliwo ciekłe to u \sim 4000 \frac{m}{s}. Na podstawie równania (4), zmiana prędkości rakiety od v=0 do v=v_I wiąże się (w rozważanym przypadku rakiety jednoczłonowej) z następującą zmianą masy rakiety:

\frac{M_1}{M_2} = e^{v_I/u} \approx 7.2.

Oznacza to, że aby rakieta mogła wejść na niską orbitę okołoziemską, paliwo oraz utleniacz muszą stanowić przynajmniej

\frac{M_1-M_2}{M_1} \times 100 \% \approx 86 \%

jej początkowej masy!

Przejdźmy teraz do zdefiniowania dwóch podstawowych parametrów silnika rakietowego, mianowicie siły ciągu praz impulsu właściwego.  W tym celu, podstawmy do równania Newtona (2) wyrażenie na zmianę pędu (1). Otrzymamy wtedy:

M\frac{dv}{dt}-u\frac{dm}{dt}=F,

lub równoważnie

M\frac{dv}{dt}=F+u\frac{dm}{dt},   (5)

czyli tak zwane równanie Mieszczerskiego. Lewa strona równania (5) to szkolne wyrażenie: masa  M pomnożona przez przyśpieszenie (ponieważ a=\frac{dv}{dt}), pojawiające się w równaniu Newtona dla punktu materialnego o stałej masie. W rozważanym przypadku, z uwagi na zmianę masy rakiety w czasie, otrzymujemy efektywnie dodatkowy przyczynek do siły działającej na rakietę równy u\frac{dm}{dt}. Jest to tak zwana  siła ciągu rakiety:

F_c = u \frac{dm}{dt}.   (6)

W rzeczywistych, chemicznych silnikach rakietowych istnieje jeszcze jeden  przyczynek do siły ciągu. Wynika on z ciśnienia wywieranego przez wyrzucany z silnika gaz na wewnętrzną stronę dyszy wylotowej (patrz rysunek powyżej). Oznaczmy powierzchnię maksymalnego przekroju poprzecznego dyszy silnika przez A. Od strony wewnętrznej, na dyszę działa siła  F_1=Ap_w, gdzie p_w jest ciśnieniem wywieranym na dyszę przez gazy wylotowe. Po drugiej stronie dyszy panuje ciśnienie zewnętrzne p_0, które wywiera na dyszę siłę  F_2=Ap_0. Z uwagi na różnicę ciśnień  p_wp_0, na dyszę (i w konsekwencji na rakietę) działa wypadkowa siła

F_p =F_1-F_2=A(p_w-p_0).   (7)

Uwzględniając ten wkład w równaniu (5), możemy zapisać całkowitą siłę ciągu jako sumę wyrażeń (6) oraz (7):

F_c = u \frac{dm}{dt} + A(p_w-p_0).  (8)

W oparciu o siłę ciągu możemy natomiast zdefiniować wielkość zwaną impulsem właściwym, opisującą zmianę pędu rakiety względem utraconej masy:

I_{sp} := \frac{F_c dt}{g  dm}= \frac{F_c}{g  \dot{m}},  (9)

gdzie g\approx 9,81 \frac{m}{s^2} jest przyśpieszeniem grawitacyjnym na powierzchni Ziemi. Natomiast, \dot{m} := \frac{dm}{dt} to strumień masy gazów wylotowych. Impuls właściwy wyrażany jest w sekundach. W celu lepszego zrozumienia definicji (9), warto rozważyć przypadek siły ciągu dany przez równanie (6), zaniedbujące przyczynek od ciśnienia wywieranego na dyszę przez gazy wylotowe. Podstawiając wyrażenie (6) do równania (9), otrzymujemy:

I_{sp} =  \frac{F_c}{g  \dot{m}} =\frac{u \dot{m}}{g  \dot{m}} = \frac{u}{g}.  (10)

W tym wyidealizowanym przypadku, impuls właściwy jest więc innym sposobem wyrażenia prędkości wyrzucanego z silnika rakietowego czynnika roboczego (spalin).

spacex_its_raptor_engine_by_william_black-dajqa73
Podstawowe parametry silnika rakietowego Raptor firmy SpaceX. Źródło

Jako przykład zastosowania wprowadzonych powyżej wielkości, rozważmy przygotowywany przez firmę SpaceX silnik Raptor. Silnik ten znajdzie zastosowanie w rakiecie Big Falcon Rocket (BFR),  która zostanie wykorzystana do lotów na Księżyc oraz na Marsa.  Silnik Raptor wykorzystuje jako paliwo ciekły metan, który wraz z ciekłym tlenem (pełniącym rolę utleniacza) tworzy tak zwany Methalox, o który pisałem w artykule Kosmiczna stacja paliw.

W przypadku silnika Raptor, planowany impuls właściwy na powierzchni Ziemi ma wynosić I_{sp} \approx 334 s, zaś siła ciągu tego silnika ma sięgać F_c \approx 3000 kN = 3 MN. Na tej podstawie, możemy oszacować masę wyrzucanego, w każdej sekundzie, czynnika roboczego (tzw. strumień masy). Posługując się równaniem (9), otrzymujemy:

\dot{m} = \frac{F_c}{I_{sp} g} \approx  900 \frac{kg}{s}.

A więc, w każdej sekundzie pracy, z jednego  silnika wyrzucana jest prawie tona spalin, generujących ciąg rakiety. Pierwszy człon rakiety BFR ma mieć aż 31 takie silniki (we wcześniejszych planach liczba ta wynosiła 42). Mieszczące się, w pierwszym członie rakiety BFR około 3000 ton mieszanki paliwowej, pozwolą więc na pracę silników przez około dwie minuty pracy,  przy pełnym ciągu.  Ponadto, wykorzystując równanie (10) możemy oszacować prędkość gazów wylotowych

u \approx I_{sp}g \approx 3300 \frac{m}{s},

czyli około 10 M. Warto podkreślić, że prędkość ta stanowi jedynie około 10^{-5} prędkości światła (c \approx 300\ 000\ 000 \frac{m}{s}). Dużo większe prędkości wyrzucanej materii, a tym samym większe impulsy właściwe osiągane są w przypadku silników jonowych lub plazmowych. W ich przypadku, impuls właściwy może osiągać wartość kilku tysięcy sekund. Idąc dalej, coraz śmielej brane są obecnie pod uwagę silniki w których czynnikiem roboczym jest promieniowanie powstałe w wyniku anihilacji materii z antymaterią. Czyli tak zwane silniki na antymaterię, w których źródłem zmiany pędu rakiety są fotony poruszające się z prędkością światła (i posiadające pęd p = \hslash \omega). Taki czynnik roboczy wymaga jednakże uwzględnienia efektów relatywistycznych, przewidywanych przez szczególną teorią względności Einsteina. W konsekwencji, w przypadku takim, wyprowadzone powyżej równanie Ciołkowskiego, należy zmodyfikować do tak zwanego równania rakiety relatywistycznej.  To jednak nie koniec podróży w jaką może nas zabrać studiowanie fizyki silników rakietowych. Rozważania egzotycznych napędów rakietowych, takich jak chociażby napęd Alcubierre’a, są fantastyczną okazją do zagłębienia się we współczesną fizykę teoretyczną, czyli fizykę świata przyszłości.

© Jakub Mielczarek