Nie każdy przyszły marsjański astronauta, tak jak ochotnicy w programie Mars One, chciałby dotrzeć do Czerwonej Planety z pustym zbiornikiem paliwa. Jednakże koszty potrzebne do przetransportowania odpowiednich ilości paliwa rakietowego na powierzchnię Marsa są ogromne. Rozwiązaniem dużo korzystniejszym ze względów ekonomicznych jak i perspektywicznym pod kątem rozwoju marsjańskiej kolonii byłoby wytworzenie paliwa rakietowego na powierzchni Marsa.
Naturalnym pierwszym kandydatem na paliwo rakietowe jest ciekły wodór, uzyskany w procesie elektrolizy wody. Marsjańska gleba bogata jest w wodę w stanie stałym. Regolit marsjański należałoby więc najpierw np. ogrzać w celu odparowania wody, po czym skroploną wodę poddać elektrolizie. Energię elektryczną potrzebną do przeprowadzenia

tego procesu można nietrudno pozyskać z instalacji fotowoltaicznej. Warto podkreślić, że w procesie elektrolizy wody powstaje również tlen który może być wykorzystany zarówno jako utleniacz paliwa jak i składnik mieszanki tlenowej dla astronautów. Otrzymany w procesie elektrolizy wodór okazuje się jednak nie być optymalnym źródłem energii do napędzania, startujących z Marsa, statków kosmicznych.
Problem polega na tym, że wodór jako paliwo rakietowe, w celu zwiększenia gęstości energii, należy zmagazynować w stanie ciekłym. Utrzymywanie zaś ciekłego wodoru poniżej temperatury wrzenia jest zadaniem bardzo wymagającym. Wiąże się to z faktem, iż temperatura wrzenia wodoru jest niezwykle mała i równa (przy ciśnieniu atmosferycznym) około -253°C (20 K). Co więcej, nawet w tych warunkach gęstość wodoru jest bardzo niska i pozostaje na poziomie 0,07 kg/litr. Przygotowanie systemu który umożliwiłby utrzymanie wodoru w tak ekstremalnym stanie na powierzchni Marsa, przynajmniej na początkowym etapie rozwoju tamtejszej kolonii, byłoby zadaniem niesłychanie trudnym.
Z pomocą przychodzi jednakże jeszcze jeden składnik występujący dosyć obficie na Marsie, a mówiąc precyzyjniej tworzy jego atmosferę. Chodzi mianowicie o dwutlenek węgla, stanowiący około 95 % składu atmosfery, wytwarzającej na powierzchni Marsa ciśnienie około 6 hPa. Jest to ciśnienie porównywalne z tym występującym w ziemskiej stratosferze.
Wykorzystanie (uprzednio sprężonego) dwutlenku węgla w połączeniu z wodorem pozwala na przeprowadzenie tak zwanej reakcji metanacji, okrytej przez Paula Sabatiera, laureata Nagrodą Nobla w dziedzinie chemii z 1912-ego roku. Reakcja ta, zwana reakcją Sabatiera, może zostać zapisana w postaci następującego równania:
.
Reakcja powyższa przebiega w sposób optymalny w temperaturze około 300-400°C i wymaga zastosowania odpowiedniej powierzchni pełniącej funkcję katalizatora (wykonanego np. z niklu lub rutenu).
Wytworzony w procesie Sabatiera metan stanowi dobrą alternatywę dla wodoru jako paliwa rakietowego. Przechowywanie ciekłego metanu jest znacznie łatwiejsze, gdyż temperatura jego wrzenia wynosi około -162°C (111 K) co jest prawie 100 K więcej niż temperatura wrzenia wodoru. Systemy przechowywania ciekłego metanu to bardzo dobrze rozwinięta technologia, stosowana powszechnie w różnych warunkach. Wynika to z faktu, iż zyskujący na coraz większej popularności LNG (ang. liquefied natural gas) to w głównej mierze metan. Przechowywanie LNG wymaga zastosowania zbiornika kriogenicznego utrzymujący gaz we wspomnianej temp. około -160°C. Zbiorniki takie stosowane są zarówno w autobusach zasilanych przez LNG jak i w ogromnych gazowcach. Gazowce LNG z Kataru, USA czy też Norwegii przyjmowane są w Polsce przez Terminal LNG w Świnoujściu mogący zmagazynować 320 000 m³ LNG.
Wykorzystanie ciekłego metanu jako paliwa rakietowego w postaci mieszanki (tzw. methalox), zawierającej ciekły tlen jako utleniacz, zapowiedziała firma SpaceX w kontekście swoich planów eksploracji Marsa. Rozwijany przez SpaceX silnik Raptor przystosowany jest właśnie do pracy oparciu o methalox. Opracowywana rakieta

BFR ma zawierać siedem takich silników oraz zbiorniki pozwalające zmagazynować 240 000 kg ciekłego metanu oraz 860 000 kg ciekłego tlenu. Gęstość ciekłego metanu to około 423 kg/m³, co daje objętość metanu w zbiorniku rakiety BFR równą około 567 m³. Ciekły metan który można zgromadzić we wspomnianym wcześniej terminalu LNG w Świnoujściu wystarczyłby na napełnienie zbiorników ponad pięciuset rakiet BFR!
Warto podkreślić, że opisana tutaj reakcja metanacji, oprócz aplikacji kosmicznych, ma również potencjalnie szerokie zastosowanie na Ziemi. Reakcję tę stosuje się w szczególności w eksperymentalnych systemach typu Power-to-gas, które pozwalają magazynować nadwyżki w produkcji energii w postaci metanu. Jest to podejście szczególnie obiecujące w kontekście energii elektrycznej pozyskiwanej z farm fotowoltaicznych które wytwarzają prąd w ciągu dnia. Bodajże najbardziej rozwinięty system tego typu został opracowany przez Audi w ramach rozwijanej technologii e-gas:
Kolejna ważna własność reakcji Sabatiera to możliwość przekształcania dwutlenku węgla w wodę i metan. Nadmierna emisja dwutlenku węgla do atmosfery jest główną przyczyną obserwowanych zmian klimatycznych. Wyobrazić możemy sobie technologię w której dwutlenek węgla z rekcji spalania np. w elektrowni węglowej podlega bezpośredniej konwersji w metan w wyniku reakcji Sabatiera. Otrzymany metan jest zaś na przykład wprowadzany do systemu dystrybucji gazu. Proces metanacji może więc pomóc w ograniczeniu emisji i tym samy przyczynić się do spowolnienia postępujących zmian klimatycznych.
Zanim powstanie marsjańska stacja wytwarzania metanu wraz z kosmiczną stacją paliw, pozwalającą napełnić zbiorniki rakiet ciekłym metanem, prototypowe instalacje tego typu muszą zostać zbudowane i dokładnie przetestowane na Ziemi. Miejmy nadzieję, że jedna z pierwszych takich kosmicznych stacji paliw powstanie i będzie testowana w Polsce. Warto pokreślić, że technologie takie jak opisany tu reaktor Sabatiera pozwolą nam nie tylko zdobywać Kosmos ale mogą nam również pomóc przetrwać na Ziemi.
© Jakub Mielczarek