Świat zachłysnął się cyfrowym złotem – kryptowalutami. Bitcoin i technologia Blockchain stały się, w mgnieniu oka, częścią naszej codzienności. Choć jeszcze dosłownie kilka lat temu były to nazwy znane głównie entuzjastom nowych technologii oraz postępowym inwestorom. Obecnie, zainteresowanie rynkiem kryptowalut jest ogromne, a sięgające nawet kilkuset procent w skali roku wzrosty kursów kryptowalut wabią okazją zbicia fortuny.
Nie mniej emocji dostarcza nam obecny renesans w eksploracji kosmosu (tzw. NewSpace). Takie momenty jak symultaniczne lądowanie odzyskiwanych po stracie rakiety Falcon Heavy stopni pomocniczych to sceny niczym z filmów science fiction. Spektakularność tych wyczynów pobudza wyobraźnię nie tylko pasjonatów kosmosu, ale i inwestorów, przyśpieszając otwarcie przestrzeni kosmicznej dla coraz ambitniejszych wyzwań. Trochę w cieniu Blockchainu i NewSpace, rozgrywa się obecnie jeszcze jedna niezwykle ważna technologiczna rewolucja, nie robiąca może tyle huku co start rakiety ani nie hipnotyzująca tak jak cyfrowe złoto, ale za to gruntownie transformująca informacyjną tkankę naszego świata. Chodzi mianowicie o przeskok od obecnej fazy przetwarzania informacji klasycznej (bity) do epoki informacji kwantowej (qubity). Nowe technologie kwantowe, bo za ich sprawą ma to miejsce, wpłyną na dalszy rozwój zarówno kryptowalut jak i technologii kosmicznych. Możemy sformułować nawet śmielszą tezę: rozwiązania, które zrodzą się na przecięciu tych trzech obszarów (kryptowalut, technologii kwantowych i eksploracji kosmosu), zrewolucjonizują każdy z nich z osobna jak i wygenerują zupełnie nową jakość.
Ale po kolei. Kryptowaluty opierają się na rozproszonym systemie księgowym typu peer-to-peer, zaproponowanym w artykule Bitcoin: A Peer-to-Peer Electronic Cash System. W rozwiązaniu takim, w przeciwieństwie do standardowych systemów finansowych, nie istnieje centralny podmiot autoryzujący, np. bank. Poprawność obrotu kryptowalutą zapewniona jest natomiast poprzez decentralizację oraz szereg zabezpieczeń kryptograficznych. Należy do nich, w szczególności, podpis elektroniczny za pomocą którego składane są dyspozycje transakcji. Jest to przykład tak zwanej kryptografii asymetrycznej, w której istnieją dwa typy klucza: prywatny oraz publiczny. Wykonanie transakcji wiąże się z podpisaniem, za pomocą klucza prywatnego, dyspozycji transakcji i następnie jej autoryzowanie przez innych użytkowników sieci, na postawie znajomości klucza publicznego. Dokładnie tak samo jak w przypadku składania podpisu elektronicznego. Siła takiego zabezpieczenia opiera się na dużej złożoności obliczeniowej związanej z odtworzeniem postaci klucza prywatnego na podstawie znajomości klucza publicznego. W przypadku Bitcoina, wykorzystywany jest w tym celu algorytm ECDSA (Elliptic Curve Digital Signature Algorithm). Jest on odporny na ataki prowadzone przez komputery klasyczne. Natomiast, okazuje się, że dla uniwersalnych komputerów kwantowych problem ten przestaje być aż tak trudny. Mianowicie, do znalezienia klucza prywatnego (w kryptografii bazującej na ECDSA) możliwe jest zastosowanie zmodyfikowanego kwantowego algorytmu faktoryzacji Shora. Niedawna publikacja Quantum attacks on Bitcoin, and how to protect against them sugeruje, że postęp w rozwoju komputerów kwantowych może umożliwić łamanie obecnych zabezpieczeń opartych o ECDSA już za niespełna 10 lat.
Utrzymanie zdecentralizowanej struktury Blockchainu, na której opary jest Bitcoin, wymaga pracy tak zwanych górników (minerów). Zapłatą za wkład ich mocy obliczeniowej w utrzymywanie systemu są Bitcoiny. Żeby jednak je otrzymać, należy rozwiązać zadanie oparte o tak zwaną funkcję haszującą SHA-256, opracowaną przez National Security Agency. W celu rozwiązania zadania, konieczne jest zbadanie wartość funkcji haszujacej dla bardzo dużej ilości różnych wartości jej argumentu. Jest to, dla komputerów klasycznych, niezwykle żmudne zadanie (energia elektryczna przeznaczana obecnie na tę czynność, tylko w przypadku Bitcoinu, wynosi w skali roku ponad 70 TWh, co jest porównywalne z konsumpcją energii elektrycznej Austrii). Okazuje się jednak, że zadanie to jest jednym z tych z którymi doskonale radzą sobie algorytmy kwantowe. Otóż, można w tym przypadku wykorzystać jeden z najbardziej znanych algorytmów kwantowych, tak zwany algorytm Grovera. Pozwala on zredukować złożoność obliczeniową procesu poszukiwania argumentu funkcji haszującej do pierwiastka kwadratowego z liczby dozwolonych argumentów.
Możemy więc dojść do wniosku, że rozwój technologii kwantowych, w szczególności uniwersalnych komputerów kwantowych (takich jak np. IBM Q), stanowi zagrożenie dla zabezpieczeń na których opierają się obecne kryptowaluty. Z drugiej strony jednak, technologie kwantowe pozwalają również ulepszyć systemy takie jak Blockchain. Miedzy innymi, klasyczne zabezpieczenia kryptograficzne mogą zostać zastąpione przez odpowiednie rozwiązania kryptografii kwantowej. Do najważniejszych z nich należą: kwantowe generatory kluczy oraz tak zwana Kwantowa Dystrybucja Klucza (KDK).
KDK opiera się na takich własnościach mechaniki kwantowej jak zaburzenie stanu układu kwantowego poprzez pomiar i tak zwany zakaz klonowania stanów kwantowych. Na tej podstawie, protokoły kwantowej dystrybucji klucza są w stanie wykryć każdą próbę wykradzenia informacji. Stanowią więc wręcz idealną metodę zabezpieczenia wymiany klucza prywatnego, eliminując tym samym potrzebę stosowania kryptografii asymetrycznej. Warto podkreślić, że KDK osiągnęła poziom technologii dostępnej komercyjnie. Jednakże, jej stosowanie na dużych odległościach (rzędu kilkuset kilometrów) wciąż stanowi wyzwanie. Wiąże się to z koniecznością przesyłania pojedynczych fotów, w których stanach kwantowych zakodowany jest klucz prywatny. Można w tym celu zastosować światłowód. Nie jest to jednak rozwiązanie optymalne gdyż, z uwagi na zakaz klonowania stanów kwantowych, wzmacnianie sygnału przesyłanego tą drogą jest trudnym zadaniem. Żeby zniwelować straty w przesyłanym sygnale, niezbędne jest zastosowanie tak zwanych kwantowych powielaczy, realizujących protokół teleportacji kwantowej. Z uwagi na złożoność techniczną takiego rozwiązania, dużo łatwiejsze okazuje się przesyłanie pojedynczych fotonów w powietrzu lub w próżni. W konsekwencji, jedyny dostępny dzisiaj sposób przeprowadzania kwantowej dystrybucji klucza na odległościach międzykontynentalnych opiera się na wykorzystaniu przestrzeni kosmicznej.
Prace nad takim rozwiązaniem prowadzono już od dłuższego czasu. Ostatecznie, udało się tego dokonać w ubiegłym roku przez chińsko-austriacki zespół naukowców i inżynierów. Wyniki przeprowadzonej na dystansie 7600 km, pomiędzy stacjami w Chinach i Austrii, kwantowej dystrybucji klucza opublikowano w styczniu bieżącego roku na łamach Physical Review Letters [arXiv:1801.04418]. Do zrealizowania kwantowej transmisji wykorzystano satelitę Micius, stanowiącą jednostkę zaufaną dystrybuującą klucz prywatny w protokole BB84 (Bennett-Brassard 1984). Szczegóły tego eksperymentu omawiam w artykule Kwantowa łączność satelitarna.
Sukces chińskiego projektu dowodzi możliwości globalnego wykorzystania kwantowych protokołów kryptograficznych. Otwiera on również drogę do dalszego rozwoju tej technologii, zarówno do celów militarnych jak i komercyjnych. Jedną z niewątpliwie najbardziej fascynujących możliwości jest stworzenie tak zwanego kwantowego internetu:
Kwantowy internet zapewni bezpieczeństwo pracy systemów finansowych. W szczególności, umożliwi rozszerzenie technologii Blockchain do przypadku kwantowego (zabezpieczanego przez KDK). Propozycja takiej modyfikacji technologii Blockchain została niedawno opisana w artykule Quantum-secured blockchain. Internet kwantowy umożliwi również wdrożenie pochodnych do dyskutowanych już na początku lat osiemdziesiątych koncepcji kwantowego pieniądza. W szczególności, takich jak propozycja Weisnera, w której pieniądz jest pewnym stanem kwantowym (np. sekwencją qubitów). Niepodrabialność kwantowego banknotu wynika wprost z zakazu klonowania (nieznanego) stanu kwantowego. Warto zaznaczyć, że realizacja kwantowego pieniądza opartego o propozycję Weisnera została doświadczalnie zademonstrowana w 2016-tym roku przez polsko-czeski zespół fizyków kwantowych i opisana w artykule Experimental quantum forgery of quantum optical money, opublikowanym w Nature. Po więcej informacji na temat kwantowych pieniędzy zachęcam sięgnąć do artykułu Quantum Money.

Kwantowo zabezpieczone kryptowaluty czy też kwantowe pieniądze będą mogły, dzięki satelitarnemu internetowi kwantowemu, tworzyć globalny system walutowy. Dzięki wykorzystaniu i tak już stosowanej do tego celu przestrzeni kosmicznej, nie będzie stanowiło żadnego problemu by rozszerzyć obszar obejmowany kwantową siecią poza powierzchnię Ziemi. Nie ma przecież lepszego medium do przesyłania stanów kwantowych niż próżnia.
Ludzie przebywający w kosmosie, czy to na orbicie okołoziemskiej czy też w planowanych stacjach na Księżycu oraz na Marsie, będą mogli dokonywać płatności korzystając z kwantowo zabezpieczonych kryptowalut. Będą oni mogli korzystać również z pozafinansowych zastosowań kwantowej wersji technologii Blockchain, np. w telemedycynie.
Od strony możliwości technicznych, takie wizje stają się dzisiaj jak najbardziej wykonalne. Idąc dalej, naturalnym wydaje się wykorzystanie w przyszłości przestrzeni kosmicznej jako miejsca do przechowywania i przetwarzania informacji kwantowej. Stany kwantowe, będące nośnikiem informacji kwantowej ulegają, poprzez oddziaływanie ze środowiskiem, dekoherencji która stanowi jedną z największych przeszkód w rozwoju technologii kwantowych. Warunki wysokiej próżni i niskich temperatur, redukujące proces dekoherencji, powszechnie występują w przestrzeni kosmicznej. Z tego powodu, możliwe jest więc, że przyszłe centra przetwarzania i magazynowania informacji kwantowej, np. skarbce kwantowych pieniędzy, będą ulokowane nie na Ziemi lecz ukryte zostaną w takich miejscach jak jaskinie lawowe na Księżycu.
© Jakub Mielczarek