Optyczny mózg

Prędkość rozchodzenia się informacji (za pośrednictwem impulsów nerwowych) w mózgach ssaków sięga około 120 m/s. Wartość ta determinuje czas potrzebny na komunikację pomiędzy dowolnymi obszarami w mózgu i w konsekwencji czas reakcji na bodźce. To zaś, przy narzuconych przez środowisko zewnętrzne skalach czasowych, rzutuje na maksymalne dopuszczalne rozmiary mózgu. Przykładowo, informacja pomiędzy dwoma odległymi o 10 cm częściami mózgu podróżuje co najmniej milisekundę (0,001 s). Zachowanie tego rzędu czasów propagacji sygnału jest niezbędne do tego, żeby organizm mógł przetworzyć bodziec zewnętrzny i zareagować na niego w ułamku sekundy. Takie tempo rekcji umożliwiło naszym przodkom przetrwać w potyczce z dzikim zwierzęciem i prowadzić polowania. Dzisiaj jest to niezbędne chociażby do tego, żeby sprawnie kierować pojazdami.

O ile prędkość propagacji impulsów w naszych mózgach jest ograniczona biochemiczną naturą naszego hardware’u, to w przypadku systemów neuromorficznych – naśladujących działanie mózgu –  ogranicza nas jedynie maksymalna prędkość rozchodzenia się informacji w przyrodzie, równa prędkość światła w próżni, c\approx 299\ 794\ 458 m/s.  Jeśli udałoby się zasymulować działanie sieci neuronowych za pomocą światła, mogłyby one przetwarzać informacje około 2,5 miliona razy szybciej niż ludzki mózg. To zaś,  z jednej strony znaczy, że optyczny mózg mógłby być znacznie większy niż ten biologiczny.  Dla przykładu, przy zachowaniu minimalnej latencji sygnałów w ludzkim mózgu (~1 ms dla ~10 cm) rozmiary świetlnej sieci neuronowej mogą sięgać 300 km. Z drugiej strony, możliwe stałoby się osiąganie dużo większego niż w ludzkim mózgu tempa przetwarzania informacji. Hipotetyczny, optyczny symulator ludzkiego mózgu o rozmiarach naturalnych działałaby około 2,5 miliona razy szybciej od jej biologicznego odpowiednika. Jeden dzień funkcjonowania ludzkiego mózgu odpowiadałby więc około czterem setnym sekundy pracy optycznego mózgu. Jeden ziemski rok, odpowiadałby w symulacji optycznej około 13 sekundom. Natomiast, w świecie optycznym, symulacja naszego całego życia nie trwałoby dłużej niż dwadzieścia kilka minut!

Powyższe szacunki zaniedbują dodatkowe czasy wynikające z propagacji sygnału w innym niż próżnia ośrodku, jak i te związane z nieliniowym przetwarzaniem informacji optycznej, uwzględnienie których może być konieczne do symulacji realistycznych sieci neuronowych. Są one jednak wystarczająco miarodajne to tego, żeby uzmysłowić nam bardzo ważną z punktu widzenia człowieka własność sztucznej inteligencji. Mianowicie, może stać się ona nie tylko potężniejsza do ludzkiej, pod względem ilości przetwarzanej informacji ale i znacznie od niej szybsza. Z taką, tak zwaną, superinteligencją (Artificial Super Intelligence – ASI) trudno byłoby człowiekowi konkurować, ponieważ żyłby on w zupełnie innych skalach czasowych, nieprzystających do tych obowiązujących w wirtualnym świecie superinteligencji. Kiedy w świecie optycznej superinteligencji upłynęłoby 2,5 miliona lat, czyli czyli okres porównywalny z całą historią Homo sapiens na Ziemi, w zewnętrznym świecie ludzkim upłynąłby zaledwie jeden rok ziemski.

Wróćmy zatem na Ziemię. Superinteligencja to wciąż domena futurologii, natomiast prace nad optycznymi sztucznymi sieciami neuronowymi i ogólniej procesorami optycznymi trwają na dobre [1,2,3,4].  To samo dotyczy innych podejść do sztucznej inteligencji i symulacji ludzkiego mózgu. Można o tym poczytać w moich wcześniejszych wpisach O symulacjach ludzkiego mózgu i Dwanaście technologii jutra, gdzie m.in. przywołuję prowadzone obecnie symulacje wykonywane za pomocą tzw. procesorów neuromorficznych. Tutaj chciałbym jednak pozostać przy podejściu optycznym, które można uważać za rozwiązanie docelowe, zarówno ze względu na dyskutowaną powyżej możliwość osiągnięcia maksymalnej dopuszczalnej w przyrodzie prędkości przesyłania informacji, jaki i z uwagi na możliwość przetwarzania informacji z niedostępną innymi metodami częstotliwością. Ponadto, podejście optyczne w sposób naturalny otwiera drogę do implementacji tak zwanej kwantowej sztucznej inteligencji (ang. quantum artificial intelligence) [5,6,7], ale o tym przy innej okazji.

Chociaż mogłoby się wydawać, że optyczna sieć neuronowa to nieuchronnie coś bardzo skomplikowanego i kosztownego, to prostą optyczną sieć neuronową może zbudować dosłownie Każdy, korzystając z powszechnie dostępnych elementów do budowy światłowodowych sieci internetowych. To zaś jak można to zrobić zarysuję poniżej i posłużę się tym przykładem do omówienia kilku wybranych aspektów optycznych implementacji sieci neuronowych.

20200317_113414
Prototyp optycznej sztucznej sieci neuronowej opartej o światłowody jednomodowe oraz dzielniki mocy (splittery). Źródłem światła jest laser, pracujący na długości fali 650 nm.

Do konstrukcji optycznej sieci neuronowej będziemy potrzebować sztuczne neurony oraz połączenia pomiędzy nimi. Te drugie możemy zrealizować wykorzystując światłowody, stosowane do komunikacji optycznej. Odcinki takich światłowodów można ze sobą łączyć stosując odpowiednie adaptery. Medium transmisyjne wykorzystywane w światłowodach to przeważnie domieszkowane szkło kwarcowe, dla którego współczynnik załamania n \approx 1.46, co daje prędkość propagacji sygnału v=c/n \approx 205\ 000 km/s, czyli około 70 \% prędkości światła w próżni.

Funkcją neuronów jest zbieranie sygnałów wejściowych z synaps i wytworzenie na ich podstawie sygnału wyjściowego. W biologicznych sieciach neuronowych, dodatkowym aspektem jest wytworzenie tak zwanego potencjału czynnościowego (ang. spike). Możliwość wytwarzania spike’ów jest brana pod uwagę w symulacjach mózgu, w szczególności z wykorzystaniem systemów neuromorficznych. Natomiast, są one zazwyczaj pomijane w uproszczonych modelach sieciach neuronowych stosowanych w uczeniu maszynowym. W tym przypadku, działanie sztucznego neuronu polega na zsumowaniu, z odpowiednimi wagami (synaptycznymi), sygnałów wejściowych i przetworzeniu takiej sumy przez tzw. funkcję aktywacji, otrzymując w ten sposób sygnał wyjściowy. Otrzymany sygnał jest następnie podawany na wejścia innych neuronów, lub też, na wejście tego samego neuronu. Do sytuacji bez tego typu pętli zalicza się sieć typu feedforward, na której skupimy poniżej naszą uwagę.

Najprostszą realizacją optycznego neuronu jest przypadek z liniową funkcją aktywacji,  dla którego neuron jest niczym innym jak sumatorem sygnałów wejściowych. Pomimo swojej prostoty, model ten jest wystarczający do tego by uchwycić podstawową ideę przetwarzania informacji przez sieć neuronową. Realizacją optyczną  neuronu-sumatora jest rozdzielacz (ang. splitter) światłowodowy. Dodatkowo, wagi na “synapsach” takiego optycznego neuronu można modyfikować stosując odpowiednio dobrane tłumiki mocy. W rozwiązaniu prototypowym widocznym na zdjęciu powyżej, wykorzystano standardowe rozdzielacze i połączenia stosowane przy budowie sieci światłowodowych. Całość układu można jednak znacząco zminiaturyzować stosując zintegrowane obwody fotoniczne, zawierajace sieci miniaturowych sztucznych neuronów.

Istota działania sieci neuronowych sprowadza się do wykrywania wzorów. Mogą to być zarówno wzory graficzne, dźwiękowe, lub też bardziej abstrakcyjne wzory związane z przetwarzaniem języka i wyższymi funkcjami poznawczymi. Rozpoznawanie wzoru w sieci neuronowej realizowane jest warstwowo. Żeby to zobrazować, posłużmy się przykładem rozważanej sieci optycznej,  z szesnastoma neuronami w warstwie wejściowej. Neurony te będą reprezentować 16 pikseli na mapie bitowej o rozmiarach 4×4. Łącznie mamy więc 2^{16} = 65536 możliwych binarnych konfiguracji wejściowych. W przypadku optycznym, stan “1” danego bitu oznacza wprowadzenie do obwodu światła o ustalonej mocy. Stan “0” to brak światła.  Ponieważ, w ogólności, możemy zmieniać w sposób ciągły natężenie świtała, dopuszczalnych analogowych stanów wejściowych jest nieskończenie wiele. Tutaj jednak, dla uproszczenia, zawęzimy rozważania do stanów binarnych.

Kolejna warstwa, a  zarazem jedyna tzw. warstwa ukryta, wykrywa  8 liniowych wzorów składowych, wynikających z zsumowania wybranych czterech pikseli w warstwie pierwszej. Są to pośrednie wzory z których w ostatniej (trzeciej) warstwie komponowane są wzory które nasza sieć ma za zadanie rozpoznać. Sytuację tę przedstawia rysunek poniżej:

Netork
Graf reprezentujący połączenia w prototypowej optycznej sztucznej sieci neuronowej, rozpoznającej wybrane 4 wzory na bitmapie o rozmiarach 4×4.

Zaprezentowany tu przykład optycznej sieci neuronowej jest niezwykle prosty i opiera się na dzieleniu mocy sygnałów optycznych. Z uwagi na liniowość funkcji aktywacji, uzasadnione było zastosowanie tylko jednej warstwy wewnętrznej. W celu wykrywania bardziej skomplikowanych wzorów, konieczne jest wprowadzenie nieliniowych funkcji aktywacji (np. sigmoidalnych) oraz większej ilości warstw. Wyzwanie to jest podejmowane w wielu aktualnych pracach nad optycznymi sieciami neuronowymi, zarówno klasycznymi, jak i tymi wykorzystującymi kwantową naturę światła.  Nad wdrożeniami takich rozwiązań pracują m.in.  takie startupy jak LightMatterXandu.

Implementacje te dotyczą “wąskiej” sztucznej inteligencji (Artificial Narrow Intelligence – ANI) nie zaś symulacji nakierowanych na stworzenie ogólnej sztucznej inteligencji (Artificial General Intelligence – AGI), nie wspominając nawet o superinteligencji. Faza ANI jest jednak przedsionkiem do dalszego rozwoju podejścia optycznego w kierunku AGI i ASI.  Warto ostatecznie podkreślić, że przetwarzanie informacji za pomocą światła rozważane jest nie tylko w kontekście sieci neuronowych, ale również (a obecnie nawet przede wszystkim) w kontekście akceleratorów optycznych, przyśpieszających działanie procesorów o standardowej, nieneuronalnej,  architekturze. Ponadto, korzyści płynące z wykorzystania światła nie polegają wyłącznie na wysokiej prędkość propagacji sygnału. W standardowym przewodzie elektrycznym, prędkość rozchodzenia się impulsu elektromagnetycznego jest również porównywalna z prędkością światła w próżni. Problemem jest natomiast dyssypacja energii w układach elektronicznych, która rośnie wraz z częstotliwością przetwarzania informacji.  Problem odprowadzania wytworzonego w ten sposób ciepła okazał się na tyle trudny, że częstotliwość taktowania naszych komputerów pozostaje praktycznie niezmieniona od przeszło dziesięciu lat i wynosi maksymalnie ~3,5 GHz. Wykorzystanie światła jako nośnika informacji otwiera drogę do wyjścia z tego impasu. Więcej informacji na ten temat można znaleźć w poniższym filmiku oraz w artykule [4].

Chciałbym na koniec dodać, że opisana tu przykładowa optyczna sieć neuronowa powstała dzięki zasobom Garażu Złożoności i Quantum Cosmos Lab, działających na Uniwersytecie Jagiellońskim. W ramach tych dwóch przedsięwzięć planujemy kolejne projekty związane z systemami neuromorficznymi, w szczególności opartymi o optyczne przetwarzanie informacji. Osoby zainteresowane współpracą w tym obszarze zachęcam do kontaktu.

Bibliografia

[1] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D. Englund  Large-Scale Optical Neural Networks Based on Photoelectric Multiplication Phys. Rev. X 9, 021032 (2019).
[2] Xiao-Yun Xu  et al. A scalable photonic computer solving the subset sum problem, Science Advances,  Vol. 6, no. 5, eaay5853 (2020).
[3] Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y. Chen, P. Chen, G. Jo, J. Liu, and S. Du, All-optical neural network with nonlinear activation functions, Optica 6, 1132-1137 (2019).  
[4] K. Kitayama et al.,  Novel frontier of photonics for data processing – Photonic accelerator, APL Photonics 4, 090901 (2019)
[5] G.R. Steinbrecher, J.P. Olson , D. Englund et al. Quantum optical neural networks, npj Quantum Inf 5, 60 (2019).
[6] F. Tacchino, C. Macchiavello, D. Gerace et al. An artificial neuron implemented on an actual quantum processor, npj Quantum Inf 5, 26 (2019).
[7] J. Biamonte, P. Wittek, N. Pancotti et al. Quantum machine learningNature 549, 195-202 (2017).

© Jakub Mielczarek

Wykładnicza strona świata

Wszystko wskazuje na to, że nie mieliśmy w historii świata sytuacji w której równie świadomie i szeroko ludzkość odczuła potęgę wzrostu wykładniczego, jak ma to miejsce obecnie. I chociaż śmiercionośne pandemie nawiedzały świat w przeszłości, to dopiero dzięki obecnemu stopniowi informatyzacji jesteśmy w stanie tak precyzyjnie, z dnia na dzień, śledzić ich globalny przebieg, niczym notowania na giełdzie.

Jednakże, pomimo powszechnego dostępu do wiedzy i informacji, wykładniczy charakter początkowej fazy rozwoju epidemii wywołanej zarażeniem wirusem SARS-CoV-2 spowodował duże zaskoczenie. Obserwowaliśmy i wciąż obserwujemy, jak w poszczególnych krajach ilość zidentyfikowanych przypadków zarażeń rośnie z tygodnia na tydzień, najpierw od kilku do kilkudziesięciu, następnie do kilkuset, w kolejnych tygodniach do kliku tysięcy, aż do dziesiątek i setek tysięcy. O ile więc, początkowe wzrosty mogą uśpić czujność, prowadząc nierzadko do nieadekwatnych reakcji, to po nietypowo krótkim czasie sytuacja rozwija się do poziomu trudnego do opanowania.

Zachowanie takie wymyka się intuicji naszych mózgów przyzwyczajonych do ekstrapolacji liniowych, co najwyżej parabolicznych, ale nie wykładniczych.     A systematyczne przyrosty o rząd wielkości, w stałym okresie czasu, są właśnie przykładem zależności wykładniczej. Zachowanie takie dotyczy nie tylko początkowej fazy rozwoju epidemii, ale przejawia się w niezliczonej ilości procesów, na przestrzeni skal od mikroświata aż po obserwowalny Wszechświat. Wykładniczość jest więc czymś  powszechnym i ważnym dla zrozumienia otaczającego nas świata. Stwierdzenie to odnosi się nie tylko do zjawisk naturalnych, ale również do opisu pewnych aspektów cywilizacji technologicznej, będącej wytworem aktywności ludzkiej.

W większości przypadków,  zależności wykładnicze umykają jednak naszej percepcji, co ma związek z charakteryzującymi je skalami czasowymi. Są one albo zbyt długie (lata) albo zbyt krótkie (ułamki sekund). Stąd też tak słabo jesteśmy z nimi oswojeni. Obecna epidemia, wywołana koronawirusem, jest na tym tle sytuacją dosyć wyjątkowa gdyż, zarówno charakteryzujące ją skale czasowe (czasy podwojenia) wynoszą typowo kilka-kilkanaście dni (umożliwiając „odczucie” dynamiki procesu),  jak i z uwagi na bezpośrednie tragiczne skutki jakie za sobą niesie, co zaś potęguje nasze zainteresowanie jej przebiegiem. A skoro już takie niesprzyjające okoliczności wystąpiły, postarajmy się je przynajmniej wykorzystać do lepszego zrozumienia zachowań wykładniczych.

Żeby wyjaśnić istotę procesu wykładniczego posłużę się przykładem  bakterii. Bakteria, w ustalonym środowisku, potrzebuje z grubsza stałego czasu, żeby dokonać podziału. W zależności od typu bakterii może on wynosić od kilkunastu minut do nawet doby. Nazwijmy ten czas \tau. A więc, z wyjściowo jeden bakterii, po czasie \tau, otrzymamy dwie bakterie. Każda z tych bakterii, po upływie kolejnego interwału \tau, ulegnie podziałowi, dając łącznie cztery mikroorganizmy. Zatem, jeśli dla czasu t=0 mamy jedną bakterię, to dla czasu t=\tau liczba bakterii wynosi 2, dla t=2\tau liczba ta wynosi 2 \cdot 2=4, dla t=3\tau otrzymamy 2\cdot 2\cdot 2=8, itd., co obrazuje rysunek poniżej:

Graph

Z matematycznego punktu widzenia, jest to przykład postępu geometrycznego z ilorazem ciągu równym 2. A więc, każdorazowo,  po upływie czasu \tau, liczba bakterii podwaja się. Dlatego też, czas \tau nazywamy czasem podwojenia.

Stąd już łatwo dojść do wniosku, że aby wyznaczyć ilość komórek po n podziałach (dla czasu t=n\tau), należy pomnożyć przez siebie n-krotnie czynnik 2, czyli, innymi słowy, musimy wyliczyć 2^n. Wyrażając n poprzez czas t, dostajemy zaś 2^{t/\tau}. Traktując t jako liczbę rzeczywistą, otrzymujemy przykład funkcji wykładniczej o podstawie 2.  W praktyce, jako podstawę funkcji wykładniczej często wykorzystuje się liczbę e=2,71828..., co jest wygodne obliczeniowo. Otrzymaną w ten sposób funkcję wykładniczą nazywamy eksponentą.  Tutaj jednakże, dla uproszczenia, ograniczymy się do przypadku z dwójką.

Dopóki koncentracja bakterii jest niska i dostęp do zasobów nieograniczony, opisany powyżej wzrost wykładniczy dobrze opisuje wzrost populacji. Zależność ta jest  wykorzystywana chociażby w przypadku standardowych testów mikrobiologicznych na szalce Petriego, gdzie jedna bakteria potrzebuje odpowiedniej liczby podziałów, aby rozwinąć się do widocznej nawet gołym okiem kolonii. Opis wykładniczy  zaczyna się jednak załamywać, kiedy ilość namnożonych bakterii staje się odpowiednio duża a dostęp do składników budulcowych, potrzebnych do kolejnych podziałów, zaczyna być ograniczony.  Dobry opis matematyczny takiej sytuacji daje tak zwana krzywa logistyczna, która dla odpowiednio małych wartości czasu pokrywa się z trendem wykładniczym, lecz w pewnym momencie przegina się i następuje „saturacja” na ustalonej wartości.   

Wykresy funkcji wykładniczej (czerwony) oraz krzywej logistycznej (niebieski) przedstawiają rysunki poniżej:

ExpLog

Po lewej stronie znajdują się wykresy na skali liniowej. Po prawej stronie przedstawiono te same funkcje, lecz na skali logarytmicznej, na której funkcja wykładnicza staje się linią prostą.

Podstawowe modele epidemiologiczne, takie jak model SIS [1], z punktu widzenia matematycznego są równoważne powyższemu opisowi rozwoju populacji bakterii. W uproszczeniu, w przypadku takim, czas podwojenia odpowiada średniemu czasowi niezbędnemu do zarażenia przez osobę zakażoną kolejnej osoby. Ograniczając liczbę możliwych kontaktów, można ten czas wydłużyć, spowalniając tempo rozwoju epidemii. Zidentyfikowanie zaś zainfekowanych osób i uniemożliwienie im dalszego rozprzestrzeniania patogenu, może zaś cały proces wygasić. W uproszczeniu, proces taki można opisać właśnie krzywą logistyczną. Jeśli nie podjęto by żadnych środków zapobiegawczych, trend również uległ by wypłaszczeniu (jak dla krzywej logistycznej) z tą różnicą jednak, że nastąpiłoby to dla wartości porównywalnej z liczebnością całej populacji.     

Powyżej skupiliśmy naszą uwagę na wzroście wykładniczym. Równie dobrze możemy jednak mówić o wykładniczym spadku. Powszechnie znanym przykładem takiego zachowania jest rozpad promieniotwórczy.  Weźmy np. N atomów Polonu 210, dla którego czas połowicznego rozpadu wynosi około  \tau=138 dni. Oznacza to, że po czasie  \tau, z początkowych N atomów pozostanie średnio N/2. Po upływie kolejnego \tau, będziemy mieli już tylko N/4 atomów Polonu. Jak widać, to co właśnie robimy, to dzielenie wyjściowej liczby atomów przez kolejne potęgi dwójki. W ogólności, po upływie czasu t,  pozostanie więc n(t)=N/2^{t/\tau}=N2^{-t/\tau} atomów. Jest to przykład tak zwanego zaniku wykładniczego. Nawiasem mówiąc, to właśnie dosyć wyjątkowy (nie za krótki i nie za długi) czas połowicznego rozpadu Polonu 210 stoi za złą sławą tego izotopu, jako wyrafinowanego środka unicestwienia.  Przyjemniejsza strona wykładniczego zaniku przejawia się zaś w opadaniu piany w chłodnym, nasyconym dwutlenkiem węgla napoju dla osób pełnoletnich. Jak wskazują wyniki eksperymentów, czas połowicznego zaniku wynosi w tym przypadku około minuty [2]. Nie warto więc zbyt długo czekać z degustacją.   

Ale zachowania wykładnicze, to nie tylko sprawy przyziemne. Jak wskazują obserwacje astronomiczne, ewolucja objętości naszego Wszechświata przebiega w sposób bliski wykładniczemu, co jest związane z obecnością tak zwanej ciemnej energii, odkrycie której uhonorowano w 2011 roku Nagrodą Nobla w dziedzinie fizyki [3]. Aktualny czas podwojenia dla Wszechświata wynosi kilkanaście miliardów lat.  Ale to nie wszystko, obserwacje astronomiczne wspierają również tak zwany model inflacyjny, w którym młody wszechświat podlegał wykładniczemu “puchnięciu” z niewyobrażalnie małym czasem podwojenia rzędu 10^{-38} sekundy [4].

Około 13.8 miliardów lat później, w pewnym zakątku Wszechświata, rozwinęła się Cywilizacja, tworząca artefakty których poziom złożoności sam zaczął podążać w sposób wykładniczy. Sztandarowym przykładem jest tu prawo Moore’a, opisujące ilość tranzystorów w mikroprocesorze, dla którego podwojenia wynosi w przybliżeniu 2 lata [5]. Podobne prawo spełnia również moc obliczeniowa najszybszego dostępnego na świecie superkomputera, rosnąca z czasem podwojenia równym około 14 miesięcy [6]. Znanym badaczem tego typu zależności jest wynalazca i futurolog Ray Kurzweil. W jego książce The Singularity is Near  można znaleźć wiele przykładów trendów wykładniczych ze świata technologii [7]. Są one niezwykle przydatnym narzędziem futurologii analitycznej, pozwalającym przewidzieć szereg nowych możliwości jakie otworzą się przed nami w perspektywie 10-20 lat.

Na podstawie swoich analiz, Kurzweil doszedł do wniosku, że ilość wytwarzanej przez cywilizację techniczną wiedzy może rosnąć wykładniczo lub też szybciej niż wykładniczo, a kluczowym katalizatorem tego procesu stanie się sztuczna inteligencja. W tym drugim przypadku, model matematyczny przewiduje, że w skończonym czasie, ilość wiedzy będzie dążyć do nieskończoności. Obserwacja ta doprowadziła do sformułowania hipotezy tak zwanej osobliwości technologicznej [7]. To czy faktycznie zbliżamy się do takiego stanu jest kwestią dyskusyjną. Niewątpliwe jednak należy się takiej możliwości starannie przyglądać, gdyż procesy te mogą okazać się kluczowe jeszcze w obecnym stuleciu. Jak to już również podkreśliłem, w przypadku zależności wykładniczych, początki bywają bardzo niewinne. Jednakże, po przekroczeniu pewnego poziomu, wykładniczy charakter zaczyna ujawnia swoją moc. Warto więc zachować czujność.

Dużo, rzecz jasna, zależy również od tego jak nisko leży próg odczuwalności danego procesu. W większości przypadków, by go osiągnąć, wystarczy kilka wielokrotności czasu podwojenia. W przypadku epidemii, przy załóżmy 4-dniowym czasie podwojenia (co jest dobrym przybliżeniem dla wielu lokalnych faz epidemii COVID-19 [8]), zmiana ze 100 na 200 zakażonych w przeciągu 4 dni może nie być jeszcze tak przerażająca.  Natomiast, po kolejnych około 10 dniach spotkamy się z sytuacją kiedy liczba zidentyfikowanych zarażonych równa 1000, w przeciągu kolejnych 4 dni, wzrośnie do 2000. Takie wzrosty zaczynają odsłaniać siłę procesu wykładniczego. Później, niestety, jest już tylko gorzej.

Ważne jest więc, by nie bagatelizować zależności wykładniczych,   oczekując ich rychłego samoistnego „wypłaszczenia”. Jednym z najbardziej niepokojących współczesnych trendów wykładniczych jest skumulowana antropogeniczna emisja dwutlenku węgla do atmosfery [9]. Jak wiadomo, obecność dwutlenku węgla, poprzez absorpcję promieniowania termicznego z Ziemi, prowadzi do efektu cieplarnianego i w konsekwencji do zmian klimatycznych. Miejmy nadzieję, że trudne aktualne doświadczenia pozwolą nam Wszystkim lepiej uzmysłowić sobie znaczenie również tego zagrożenia.

Bibliografia

[1] R. V. Sole, Phase Transitions, Princeton University Press 2011.
[2] A. Leike, Demonstration of the exponential decay law using beer front.  European Journal of Physics, Vol. 23, No. 1, 21-26, 2001.
[3] The Accelerating Universe – Scientific Background on the Nobel Prize in Physics 2011: https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2011.pdf
[4] https://www.astro.caltech.edu/~ccs/Ay21/guth_inflation.pdf
[5] G. E. Moore, Cramming more components onto integrated circuits, Electronics, Vol. 38, No. 8, 1965.
[6] https://www.top500.org/
[7] R. Kurzweil, The Singularity is Near, Penguin Books 2006.
[8] https://ourworldindata.org/
[9] D. J. Hofmann, J. H. Butler, P. P. Tans, A new look at atmospheric carbon dioxide, Atmospheric Environment, Vol. 43, Issue 12, 2084-2086, 2009.

  © Jakub Mielczarek

Artykuł został opublikowany na portalu Polish Brief.