Kwantowe cienie

Rzucany przez przedmiot cień nie zawsze daje nam właściwe wyobrażenie o naturze oświetlanego obiektu. Dowodzi tego chociażby twórczość duetu artystycznego Tim Noble i Sue Webster, której przykład pozwoliłem sobie zamieścić poniżej.

Real Life Is Rubbish
Tim Noble i Sue Webster Real Life Is Rubbish (2002). Źródło

Przyjrzymy się powyższemu zdjęciu trochę bliżej. Widzimy na nim stertę śmieci które, pod określonym kątem, rzucają cień dwojga ludzi – Twórców instalacji. Jednym z zamysłów Artystów było niewątpliwie to by wprowadzić nasz mózg w zakłopotanie, poprzez dwoistość interpretacji tego co widzimy. Co mianowicie jest pierwotne, czy są to sylwetki ludzi czy też oświetlane przedmioty? Oczywiści z punktu widzenia fizyki sprawa jest prosta, pierwotna jest sterta rupieci, natomiast cień jest wtórny, a ponadto nie jest on obiektem fizycznym. Wchodząc na warstwę czysto artystyczną, Twórcy skłaniają nas więc do interpretowania prawdziwego (fizycznego) życia jako nie wartego więcej niż to co zdołaliśmy wyrzucić. Świat alegorii nie rządzi się jednak prawami fizyki, przez co nieskrępowanie moglibyśmy kontynuować dalej nasze wywody na temat interpretacji i znaczeń. Jest to niewątpliwe zarówno przyjemne ćwiczenie naszej kreatywności oraz intelektualne wyzwanie. Chciałbym jednak żebyśmy, po tej małej rozgrzewce, wykorzystali nasze umysły do zastanowienia się nad tym czy skoro nie jeden cień to może większa ich ilość może nam pozwolić odsłonić naturę obiektu  który te cienie rzuca. Wyobraźmy sobie na przykład, że instalację Real Life Is Rubbish zaczynamy oświetlać pod innymi kątami. Otrzymane cienie nie będą miały już nic wspólnego z sylwetkami ludzi, mogą nie przypominać zupełnie niczego.  Czy istnieje jednak metoda na to by wykorzystując te dwuwymiarowe rzuty zrekonstruować trójwymiarowy kształt sterty śmieci? Okazuje się, że jest to możliwe, chociaż w przypadku nietransparentnych obiektów taka procedura ma swoje istotne ograniczenia. Transparentność przedmiotów zależy jednak w dużym stopniu od długości fali którymi je oświetlimy. Jeśli zamiast światła widzialnego użylibyśmy rentgenowskiego zakresu promieniowania elektromagnetycznego, na podstawie rzucanych przez przedmiot cienieni moglibyśmy zrekonstruować jego trójwymiarowy kształt. Metoda ta nazywa się tomografią i jest powszechnie stosowana w obrazowaniu medycznym.  Bodajże najpopularniejszym jej przykładem jest tomografia komputerowa (CT), pozwalająca dzięki obrazom (cieniom) rentgenowskim, otrzymanym pod różnym kątem, stworzyć trójwymiarowy obraz, na przykład mózgu (film poniżej).

Od strony matematycznej, zasada działania tomografii opiera się na tak zwanej transformacie Radona. Jest to operacja  która na podstawie dwuwymiarowych projekcji (cieni) pozwala odzyskać trójwymiarowy rozkład gęstości obiektu.

Podobną do tomografii komputerowej procedurę rekonstrukcji trójwymiarowego obrazu możemy przeprowadzić również w mikroskali – w świecie kwantowym. Nosi ona nazwę tomografii kwantowej.  Odpowiednikiem rozkładu gęstości jest tu tak zwana funkcja Wignera, którą otrzymujemy ze stanu  kwantowego | \Psi \rangle, lub ogólniej tak zwanej macierzy gęstości, która w przypadku stanów czystych (ang. pure states) może być wyrażona w następujący sposób: \hat{\rho} = | \Psi \rangle \langle \Psi |.  Na przykład, dla cząstki w jednym wymiarze funkcję Wignera W(x,p), gdzie x to położenie a p to pęd możemy zapisać jako

W(x,p) = \frac{1}{\pi \hslash} \int_{-\infty}^{+\infty} \langle x+y | \hat{\rho} | x-y \rangle e^{-2i py/\hslash} dy.

Z uwagi na ścisłą relację pomiędzy funkcją Wignera a macierzą gęstości, poprzez tomografię kwantową rozumiemy zrekonstruowanie, poprzez dokonanie odpowiednich pomiarów “kwantowych cieni” stanu układu kwantowego, jednego z tych dwóch obiektów.  Chciałbym Ci teraz drogi Czytelniku pokazać jak to wygląd w praktyce i w jaki sposób tomografię stanu kwantowego będziesz mogła lub mógł przeprowadzić samodzielnie, nie odchodząc nawet od komputera.  Choć świat kwantowy może Ci się jawić jako zupełnie niedostępny a wykonywanie w nim pomiarów jako coś mało realnego, dzięki rozwojowi technologii kwantowych możemy się dzisiaj do niego całkiem łatwo dostać.  Wszystko za sprawą dostępnego publicznie pięciokubitowego komputera kwantowego firmy IBM, do którego możesz uzyskać dostęp poprzez tę stronę internetową. Jako wstęp do zagadnienia komputerów kwantowych zachęcam Cię do zapoznania się z moim wcześniejszym wpisem Elementary quantum computing.  Zakładając, że jesteś uzbrojona/ny w podstawowe wiadomości dotyczące mechaniki kwantowej, chciałbym przejść do pokazania Ci jak przeprowadzić tomografię stanu kwantowego pojedynczego kubitu, czyli stanu

|\Psi \rangle = \alpha|0\rangle +\beta |1\rangle,

gdzie, \alpha, \beta \in \mathbb{C} (liczby zespolone), a warunek normalizacji stanu kwantowego \langle \Psi | \Psi \rangle = 1 implikuje, że |\alpha|^2+|\beta|^2=1. Kubit jest nośnikiem najmniejszej porcji informacji kwantowej (odpowiednik klasycznego bitu) i od strony matematycznej jest elementem dwuwymiarowej przestrzeni wektorowej nad ciałem liczb zespolonych, czyli tak zwanej przestrzeni Hilberta.

Zanim przejdziemy do przeprowadzenia pomiarów na kubicie wykorzystując komputer kwantowy IBM Q, wprowadźmy najpierw niezbędne podstawy teoretyczne. Po pierwsze, będziemy chcieli zrekonstruować macierz gęstości \hat{\rho}, która w przypadku kubitu jest macierzą 2\times2 i można ją wyrazić jako:

\hat{\rho} = \frac{1}{2} \left( \hat{\mathbb{I}}+ \langle \hat{X}\rangle \hat{X}+ \langle \hat{Y}\rangle \hat{Y}+ \langle \hat{Z}\rangle \hat{Z}    \right) = \frac{1}{2}\left( \hat{\mathbb{I}}+\vec{S}\cdot \vec{\sigma}  \right) =\frac{1}{2} \left( \begin{array}{cc} 1+\langle \hat{Z}\rangle & \langle \hat{X}\rangle-i\langle \hat{Y}\rangle \\ \langle \hat{X}\rangle+i\langle \hat{Y}\rangle   & 1-\langle \hat{Z}\rangle \end{array} \right) .

Powyżej, wprowadziłem operatory \hat{X}, \hat{Y}, \hat{Z}, którym w reprezentacji macierzowej odpowiadają tak zwane macierze Pauliego:

\hat{X} := \sigma_x = \left( \begin{array}{cc} 0 & 1  \\ 1  & 0 \end{array} \right),  \ \  \hat{Y} := \sigma_y = \left( \begin{array}{cc} 0 & -i  \\ i  & 0 \end{array} \right),  \ \ \hat{Z} := \sigma_z = \left( \begin{array}{cc} 1 & 0  \\ 0  & -1 \end{array} \right) ,

składające się na wektor \vec{\sigma} = (\sigma_x,\sigma_y,\sigma_z).  Natomiast,  wektor \vec{S} = (\langle \hat{X}\rangle,\langle \hat{Y}\rangle,\langle \hat{Z}\rangle) złożony jest z wartości średnich które można obliczyć w oparciu o ogólne wyrażenie: \langle \hat{A}\rangle := \text{tr} (\hat{\rho} \hat{A}).

Po drugie, warto w tym momencie wprowadzić użyteczne pojęcie sfery Blocha. Mianowicie, jest to sfera jednostkowa która reprezentuje wszystkie możliwe stany kwantowe kubitu. Każdy punkt na tej sferze to inny stan kwantowy i wskazuje na niego wprowadzony powyżej wektor \vec{S}. Równanie sfery Blocha to więc \vec{S}\cdot \vec{S} = \langle \hat{X}\rangle^2+\langle\hat{Y}\rangle^2+\langle \hat{Z}\rangle^2=1. Warto zaznaczyć, że powyższe równanie sfery jest konsekwencją tego, iż \hat{\rho}=\hat{\rho}^2, co wynika z założenia dotyczącego czystości stanu kwantowego.

Bloch

Sferę Blocha wygodnie sparametryzować poprzez poprzez kąty \phi \in [0, 2 \pi) oraz \theta \in [0, \pi] tak, że stan kwantowy kubitu możemy z ich pomocą zapisać jako

| \Psi \rangle = \cos(\theta/2) |0 \rangle + e^{i \phi} \sin (\theta/2)| 1 \rangle,

gdzie pominięty został nieistotny globalny czynnik fazowy. Tomografia stanu kwantowego kubitu równoważna jest ze znalezieniem składowych wektora \vec{S},  wskazującego na konkretny punk na sferze Blocha. Wektor ten jest obiektem który chcemy zrekonstruować, podobnie jak rozważany wcześniej oświetlany przedmiot. Korzystając z tej analogii, możemy obrazowo powiedzieć, że wektor Blocha \vec{S} “rzuca trzy cienie” będące jego składowymi (rzutami).  Tomografia stanu kwantowego wymaga określenia tych trzech składowych. Jednakże, w przypadku stanów czystych, długość wektora  \vec{S} jest równa jeden (spełnione jest równanie sfery \vec{S}\cdot \vec{S} = \langle \hat{X}\rangle^2+\langle\hat{Y}\rangle^2+\langle \hat{Z}\rangle^2=1) co wprowadza relację pomiędzy “cieniami”. W takim przypadku, wystarczy zmierzyć jedynie dwie spośród wszystkich trzech składowych. Trzeci rzut możemy zaś wyznaczyć z równania sfery Blocha.  Z uwagi na to, że w przypadku ogólnym, stan kwantowy poprzez jego oddziaływanie ze środowiskiem może nie być do końca czysty (staje się tak zwanym stanem mieszanym) zasadne jest by z góry nie dokonywać założenia o czystości stanu kwantowego.

Komputer kwantowy IBM, pracujący w oparciu  o tak zwane kubity nadprzewodzące, pozwala nam wykonać pomiary w bazie własnej operatora \hat{Z}.  Wielokrotne powtórzenie pomiarów w takiej bazie, dla każdorazowo przygotowanego na nowo takiego samego stanu kwantowego, pozwala wyznaczyć wartość średnią operatora \hat{Z} w tym stanie. Mianowicie, ponieważ \hat{Z}|0\rangle = |0\rangle oraz  \hat{Z} |1\rangle = -|1\rangle, otrzymujemy

\langle \hat{Z} \rangle = (\alpha^* \langle 0| +\beta^* \langle 1|)(\alpha|0\rangle -\beta |1\rangle) = |\alpha|^2-|\beta|^2 = P(0)-P(1),

gdzie wykorzystaliśmy ortonormalność stanów bazowych |0\rangle i |1\rangle. Poszukiwana średnia jest więc różnicą pomiędzy prawdopodobieństwami znalezienia układu w stanie |0\rangle a w stanie  |1\rangle. Wyznaczenie średnich \langle \hat{X} \rangle  oraz \langle \hat{Y} \rangle, niezbędnych do przeprowadzenia tomografii, nie jest już takie bezpośrednie. Należy mianowicie dokonać pomiarów w bazach własnych operatorów \hat{X}   oraz \hat{Y}. Jak pokażemy poniżej, można tego dokonać dokonując odpowiednich transformacji badanego stanu kwantowego.  Do tego celu będą nam pomocne dodatkowe operatory:

\hat{H} = \frac{1}{\sqrt{2}} \left( \begin{array}{cc} 1 & 1  \\ 1  & -1 \end{array} \right), \ \ \  \hat{S} = \left( \begin{array}{cc} 1 & 0  \\ 0  & i \end{array} \right), \ \ \  \hat{S}^{\dagger} = \left( \begin{array}{cc} 1 & 0  \\ 0  & -i \end{array} \right) ,

pierwszy z nich to tak zwany operator Hadamarda, stowarzyszona z nim tak zwana bramka Hadamarda jest ważnym elementem w konstrukcji obwodów kwantowych. Operator \hat{S} to natomiast operator obrotu fazy o 90 stopni, natomiast \hat{S}^{\dagger} to jego sprzężenie hermitowskie.

Ponieważ jesteśmy już blisko momentu w którym zaczniemy dokonywać konkretnych pomiarów, zdecydujmy się na wybór stanu kwantowego który będziemy chcieli poddać tomografii. Mój wybór padł na stan:

| \Psi \rangle = \hat{T} \hat{H} | 0 \rangle = \frac{1}{\sqrt{2}} \left( | 0 \rangle + e^{i \frac{\pi}{4}} | 1 \rangle  \right),

dla którego wektor Blocha wskazuje, pod kątem \phi = 45^{\circ}, na punkt na  równiku na sferze Blocha. Natomiast, Ciebie drogi Czytelniku, po przeanalizowaniu poniższego przykładu,  zachęcam do eksperymentowania z wybranymi przez Ciebie stanami kwantowymi. Dodam jeszcze, że powyżej wykorzystałem operator \hat{T} zdefiniowany jest w następujący sposób:

\hat{T} := \sqrt{\hat{S}}=\left( \begin{array}{cc} 1 & 0  \\ 0  & e^{i \frac{\pi}{4}} \end{array} \right).

Dla wybranego przeze mnie stanu kwantowego, macierz gęstości przybiera postać:

\hat{\rho}_1 = \frac{1}{2} \left( \begin{array}{cc} 1 & \frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}  \\  \frac{1}{\sqrt{2}}+ \frac{i}{\sqrt{2}}   & 1 \end{array} \right) .

Sprawdzenie tego pozostawiam jako zadanie dla Ciebie. Porównują elementy tej macierzy z wprowadzoną na wstępie ogólną postacią macierzy gęstości dla kubitu możemy odczytać, że wartości operatorów \hat{X}, \hat{Y}, \hat{Y} mają w tym stanie następujące wartości:

\langle \hat{X} \rangle = \frac{1}{\sqrt{2}},  \ \ \langle \hat{Y} \rangle = \frac{1}{\sqrt{2}}, \ \  \langle \hat{Z} \rangle = 0.

Przekonajmy się teraz na ile te przewidywania teoretyczne zgadzają się z pomiarami otrzymanymi w komputerze kwantowym charakteryzującym się błędami zarówno bramek kwantowych oraz odczytu jaki i wynikającymi z tak zwanej dekoherencji kwantowej, wprowadzającej mieszanie stanu kwantowego.

Pomiar \langle \hat{Z} \rangle

Poniżej, przedstawiono obwód kwantowy umożliwiający wytworzenie stanu | \Psi \rangle = \hat{T} \hat{H} | 0 \rangle = \frac{1}{\sqrt{2}} \left( | 0 \rangle + e^{i \frac{\pi}{4}} | 1 \rangle  \right), oraz wykonanie na nim pomiarów w bazie \{|0\rangle, |1 \rangle \}. Obwód taki możemy łatwo zbudować korzystając z kreatora dostępnego na stronie IBM Experience.

Tom-ZPowtarzając powyższy algorytm 1024 razy otrzymaliśmy  P(0)=0.567 oraz  P(1)=0.433, co pozwala wyznaczyć \langle \hat{Z} \rangle = P(0)-P(1)=0.134. Niepewność tego wyniku ma dwa źródła. Pierwsze jest związane z błędami instrumentalnymi pochodzącymi od błędów bramek, będącymi na poziomie 0.001 na bramkę jedno-kubitową, oraz błędami odczytu, który jest na poziomie 0.08. Drugie źródło niepewności jest związane ze statystyczną naturą mechaniki kwantowej. W  rozważanej sytuacji spodziewamy się, że z jednakowym prawdopodobieństwem będziemy otrzymywać jako wynik pomiaru stany |0\rangle oraz  |1\rangle. Zagadnienie oszacowania odpowiednich niepewności jest matematycznie równoważne do przypadku błądzenia przypadkowego w jednym wymiarze. Jeśli przez N_0 oznaczymy ilość wyników  |0\rangle a przez N_1 ilość wyników dla |1\rangle, tak, że N_0+N_1=N=1024, to odchylenie standardowe N_0 i N_1 wyniesie s=\sqrt{N/4}=16. Stąd, możemy wyznaczyć niepewność estymacji prawdopodobieństwa, wynikającą ze statystycznej natury mechaniki kwantowej na s/N = 1/\sqrt{4N} \approx 0.016. Sumaryczną niepewność pomiaru możemy więc określić na około 0.1, czyli około 10 \%.  Otrzymane wyniki, dla P(0) oraz P(1), są w granicach tej niepewności zgodne z teoretycznie przewidywanymi  wartościami.

Pomiar \langle \hat{X} \rangle

Wykonanie pomiaru wartości średniej \langle \hat{X} \rangle wymaga obrócenia układu tak żeby ustawić kierunek X wzdłuż osi Z. Można tego dokonać dzięki poniższej relacji operatorowej

\hat{X} = \hat{H} \hat{Z} \hat{H},

którą łatwo dowieść wykorzystując reprezentację macierzową zaangażowanych tu operatorów. Na tej podstawie, wartość średnią operatora \hat{X} w  stanie  |\Psi \rangle możemy wyrazić jako

\langle \hat{X} \rangle = \langle \Psi | \hat{X} |\Psi \rangle = (\langle \Psi | \hat{H}) \hat{Z} (\hat{H}|\Psi \rangle) .

Żeby więc obliczyć wartość  \langle \hat{X} \rangle należy na stan  |\Psi \rangle zadziałać operatorem \hat{H}, po czym wystarczy dokonać pomiarów w bazie operatora \hat{Z}. Ilustruje to poniższy obwód kwantowy:

Tom-XWykonując 1024 pomiary, zupełnie tak samo jak w przypadku \langle \hat{Z} \rangle, otrzymujemy  P(0)=0.870, P(1)=0.130, co pozwala nam wyznaczyć \langle \hat{X} \rangle = P(0)-P(1)=0.740. Rozważania dotyczące niepewności pomiaru są analogiczne jak w przypadku wyznaczania  \langle \hat{Z} \rangle.

Pomiar \langle \hat{Y} \rangle

Podobnie jak w przypadku pomiaru \langle \hat{X} \rangle, również wyznaczenie wartości średniej operatora \hat{Y} może zostać wykonana poprzez odpowiednią transformację stanu kwantowego. W tym przypadku, należy wykorzystać transformację:

\hat{Y} = (\hat{S} \hat{H}) \hat{Z}(\hat{S} \hat{H})^{\dagger} = (\hat{S} \hat{H}) \hat{Z}(\hat{H} \hat{S}^{\dagger}),

(udowodnij tę relację) na której podstawie:

\langle \hat{Y} \rangle = \langle \Psi | \hat{Y} |\Psi \rangle = (\langle \Psi | \hat{S} \hat{H}) \hat{Z} (\hat{H} \hat{S}^{\dagger}|\Psi \rangle).

W celu wyznaczenia wartość średniej \langle \hat{Y} \rangle musimy więc na otrzymany stan zadziałań najpierw operatorem \hat{S}^{\dagger}, następnie operatorem \hat{H}, po czym dokonać pomiarów w bazie operatora \hat{Z}, jak to przedstawiono na obwodzie poniżej:

Tom-Y

Stąd, postępując analogicznie jak w poprzednich przypadkach, otrzymujemy P(0)=0.837, P(1)=0.163, a to pozwala nam wyznaczyć  \langle \hat{Y} \rangle = P(0)-P(1)=0.674. Czym kończymy nasze pomiary. Pozostaje nam pozbierać otrzymane wyniki.

Zbierając wszystko razem  

Zbierając powyższe wyniki, otrzymujemy następujący wektor Blocha:

\vec{S} = (\langle \hat{X}\rangle,\langle \hat{Y}\rangle,\langle \hat{Z}\rangle) =  (0.740,0.674,0.134),

którego kwadrat modułu \vec{S}\cdot \vec{S} \approx 1.02 co jest, w granicach błędu, zgodne z przypadkiem stanu czystego. Natomiast, otrzymana w wyniku przeprowadzonej tomografii macierz gęstości to

\hat{\rho}_2 = \frac{1}{2} \left(\begin{array}{cc} 1.134  & 0.740-i 0.674 \\ 0.740+i 0.674  & 0.866 \end{array} \right) .

Powszechnie stosowaną metodą ilościowego określenia zgodności dokonanej tomografii z wartością teoretyczną jest wyznaczenie tak zwanej wierności (ang. fidelity) zdefiniowanej w następujący sposób:

F(\hat{\rho}_1,\hat{\rho}_2):= \text{tr}\sqrt{\sqrt{\hat{\rho}_1}\hat{\rho}_2 \sqrt{\hat{\rho}_1}} .

Stosując powyższe wyrażenia do teoretycznie przewidzianej macierzy gęstości \rho_1 oraz macierzy gęstości otrzymanej w wyniku procedury tomografii \rho_2, otrzymujemy wartość F(\hat{\rho}_1,\hat{\rho}_2) \approx 99.996 \%. Wierność zrekonstruowanego kwantowego tomogramu jest więc bardzo wysoka, co jest jednak zgodne z oczekiwaniami dla pojedynczego kubitu. W przypadku tomografii przeprowadzonej dla większej ilości kubitów, wierność odwzorowania będzie odpowiednio niższa. O ile niższa? To już zależy od konkretnego stanu kwantowego. Jeśli masz ochotę na dalsze ambitniejsze wyzwanie, zachęcam Cię do przeprowadzenia tomografii jednego ze splątanych stanów Bella. Stany te odgrywają dużą rolę zarówno w obliczeniach kwantowych jak i w teleportacji kwantowej oraz kwantowej kryptografii (np. protokół Ekerta). W zastosowaniach tych, przygotowanie stanu kwantowego o odpowiednio wysokiej wierności ma znaczenie praktyczne i uzależnione jest od tego na przykład bezpieczeństwo zaszyfrowanej kwantowo informacji. Przyglądając się uważnie “kwantowym cieniom” stanu Bella możemy zdiagnozować czy jest on wystarczajaco “zdrowy” do wykonania powierzonego mu zadania.

© Jakub Mielczarek

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s