Stany skupienia grawitacji

Ogólna Teoria Względności Einsteina przyzwyczaiła nas do myślenia o grawitacji w języku geometrycznej struktury jaką jest czterowymiarowa czasoprzestrzeń. Jednakże, coraz  większa liczba wyników badań nad kwantową naturą oddziaływań grawitacyjnych wskazuje na możliwość występowania różnych faz (stanów skupienia) pola grawitacyjnego. Czasoprzestrzenny stan skupienia jest jedną z kilku możliwości jakie obecnie znamy.

Czy ta różnorodność fazowa grawitacji powinna nas dziwić? Absolutnie nie. Występowanie faz jest jedną z podstawowych własności  układów złożonych (ang. complex systems). Połączenie dużej ilości stopni swobody (np. cząsteczek) oraz wprowadzenie pomiędzy nimi nieliniowego oddziaływania w sposób nieodłączny wiąże się z występowaniem jakościowo różnych sposobów wewnętrznej organizacji takiego układu, czyli faz. Ponadto, fazy te rozdzielone są przez ostre granice zwane przejściami fazowymi. Zachowanie to dotyczy nie tylko systemów dyskretnych ale również ciągłych układów fizycznych jakimi są pola  samooddziałujące (przykładem takiego pola jest pole grawitacyjne).

Z kwantowego punktu widzenia, pole grawitacyjne należy uznać za przykład układu złożonego czy też układu wielociałowego (ang. many-body system). „Atomy” przestrzeni lub czasoprzestrzeni, które wyłaniają się z kwantowych teorii grawitacji, mogą, poprzez

scientificamerican1008-44-I3
„Atomy” przestrzeni w Pętlowej Grawitacji Kwantowej. Źródło

wzajemne oddziaływanie, tworzyć makroskopowe konfiguracje o jakościowo różnych własnościach. W zależności od warunków w których znajdzie się pole grawitacyjne, może przyjąć ono jedną z kilku zidentyfikowanych dotychczas teoretycznie faz. Jest to zachowanie analogiczne do przypadku zbioru cząsteczek H_2O, który w zależności od temperatury otoczenia i zajmowanej objętości utworzy jeden z trzech stanów skupienia: ciekły, stały (lód) lub gazowy (para wodna).

Nic nie stoi na przeszkodzie by przeprowadzić stosowne eksperymenty i zaobserwować stany skupienia wody. Dla grawitacji,  z uwagi na niezwykle słabe sprzężenie pomiędzy materią a polem grawitacyjnym, taka możliwość obecnie nie istnieje. Wytworzenie stanów pola grawitacyjnego w których moglibyśmy spodziewać się wystąpienia nowej fazy wymagałoby ekstremalnych gęstości energii, prawdopodobnie możliwych do osiągnięcia jedynie w bardzo wczesnym Wszechświecie lub we wnętrzach czarnych dziur. Teoretyczna analiza struktury fazowej grawitacji jest również zadaniem niełatwym. Problem polega na tym, że zazwyczaj w badaniach nad kwantową grawitacją rozpatrujemy funkcję (np. hamiltonian) opisującą oddziaływanie pomiędzy pojedynczymi kwantami („atomami”) pola grawitacyjnego. Z analizy samej postaci tej funkcji praktycznie niemożliwe jest wyciągnięcie wniosków dotyczących struktury fazowej rozważanego układu. Wiąże się to z faktem, iż występowanie faz jest przykładem zjawiska emergentnego. Na tej samej zasadzie, znajomość potencjału oddziaływania pomiędzy dwiema cząsteczkami wody nie mówi nam jeszcze nic o stanach skupienia wody które wyłonią się w makroskopowych układach takich cząsteczek.

Jak więc możemy sobie z tym problemem poradzić? Istnieją dwie główne drogi: symulacje wielociałowe kwantowej grawitacji oraz teoria renormalizacji, której zastosowanie może również wymagać przeprowadzenia symulacji.  Przybliżę tutaj podejście pierwsze. Najbardziej zaawansowane badania tego typu prowadzi się obecnie w ramach tak zwanych Kauzalnych Dynamicznych Triangulacjami (ang. Causal Dynamical Triangulations – CDT).  Wyniki najnowszych badań w ramach CDT wskazują na występowanie trzech lub

pd
Trzy fazy czterowymiarowej grawitacji w CDT. Źródło

czterech (w zależności od tego jaki  tzw. parametr porządku jest badany) faz grawitacji. Jedną z nich jest geometryczna faza C opisująca, na odpowiednio dużych skalach, czterowymiarowy Wszechświat, zgodny  z OTW.  Zaobserwowano również sub-fazę fazy C w której ujawniają się pewne nowe, niegeometryczne własności, jak również zidentyfikowano dwie dodatkowe fazy A i B. W fazie A, pole grawitacyjne przyjmuje formę charakteryzującą się fraktalną strukturą polimerową (tzw. branched polymer). Natomiast, faza B (tzw. crumpled phase) wyróżnia się dążącą do nieskończoności liczbą wymiarów, odzwierciedlającą wysoką ilość połączeń pomiędzy tak zwanymi sympleksami, z których zbudowana jest konfiguracja pola grawitacyjnego. W fazie tej, wszystkie „atomy” czasoprzestrzeni stają się swoimi sąsiadami. Jest to zachowanie zupełnie odmiennie do tego obserwowanego w fazie geometrycznej w której każdy sympleks ma małą i średnio taką samą liczbę sąsiadów.  Dzięki tej własności, w fazie C, dobrze określone jest pojęcie lokalności, możemy wprowadzić układ współrzędnych i w konsekwencji dokonać interpretacji konfiguracji pola w języku czasoprzestrzeni. Taka interpretacja nie jest możliwa w zbitej fazie B, dlatego też określamy ją mianem fazy niegeometrycznej. Istnienie tego typu stanu grawitacji wyłoniło się również z symulacji przeprowadzonych w podejściu zwanym Quantum Graphity. W rozważanych modelach, zaobserwowano przejście fazowe od fazy niegeometrycznej do fazy geometrycznej wraz z obniżaniem temperatury układu. Proces taki przyjęło się określać mianem geometrogenezy.

Rodzi się oczywiście pytanie czy niegeometryczne stany skupienia grawitacji, takie jak obserwowane w CDT fazy A i B występują lub występowały gdzieś w naszym Wszechświecie? Tak jak już wspomniałem, z uwagi na to, że wytworzenie takich faz wymagałoby użycia ekstremalnych wartości energii, prawdopodobnie jedynymi miejscami gdzie możemy ich poszukiwać są albo wnętrza czarnych dziur lub też bardzo wczesne etapy ewolucji Wszechświata. Empiryczne badanie wnętrz czarnych dziur, na obecnym poziomie zrozumienia fizyki czarnych dziur, nie jest możliwe. Pozostaje jedynie szansa w obserwacjach kosmologicznych. Rozważa się modele w których w epoce Plancka zachodzi wspomniana geometrogeneza z fazy crumpled do fazy geometrycznej. Co więcej,  związane z tym przejście fazowe może cechować się tak zwanym zachowaniem krytycznym. To zaś może prowadzić do generowania pierwotnych zaburzeń kosmologicznych oraz, poprzez  mechanizm Kibble’a-Zurka, do tworzenia grawitacyjnych defektów topologicznych. Rysuje to pewne nadzieje odnośnie możliwości empirycznego badania fazowej różnorodności grawitacji. Jest to jednakże zagadnienie niezwykle zawiłe i prawdopodobnie ostatecznie będzie możliwe uzyskanie jedynie pewnych słabych ograniczeń obserwacyjnych. Dlatego też, podstawowym narzędziem do badania stanów skupienia grawitacji pozostają dalsze eksperymenty numeryczne z wykorzystaniem coraz to lepszych algorytmów i sprzętu komputerowego.

Chciałbym na koniec pokreślić, że zagadnienie struktury fazowej grawitacji jest dużo szersze niż tu omówiono i było w ostatnim czasie przedmiotem wielu analiz w ramach niezależnych podejściach do kwantowej grawitacji. Z konieczności, musiałem ograniczyć się tutaj do przytoczenia zaledwie kilku wybranych wyników. Dalsze przykłady można znaleźć w artykule Spacetime as a quantum many-body system  oraz w artykule Towards the map of quantum gravity (w rozdziale Phases of gravity i w literaturze tam cytowanej).

© Jakub Mielczarek

One thought on “Stany skupienia grawitacji

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s