Splątanie kwantowe w nanosatelicie

Udało się zrealizować kolejny ważny krok w kierunku wykorzystania przestrzeni kosmicznej do prowadzenia komunikacji kwantowej oraz do badań nad zjawiskami kwantowymi w warunkach mikrograwitacji. Stało się to za sprawą nanaosatelity SpooQy-1, który zrealizował eksperyment demonstrujący splątanie kwantowe fotonów w warunkach kosmicznych [1]. Misja została przeprowadzona przez Centrum Technologii Kwantowych w Singapurze, we współpracy z partnerami ze Szwajcarii, Australii i Wielkiej Brytanii.

Pierwsze eksperymenty satelitarne z wykorzystaniem splątanych stanów fotonów zostały zrealizowane w ostatnich latach przez chińskiego satelitę średniego typu o nazwie Micius [2]. Jednakże, dopiero teraz udało się przeprowadzić eksperyment ze splątanymi stanami kwantowymi fotonów z wykorzystaniem miniaturowego nanosatelity typu CubeSat. W standardzie tym, nanosatelity budowane są z jednostek (unitów) w postaci sześcianów o długości krawędzi równej 10 cm. Pojedynczą kostkę określamy jako 1U – jedna jednostka. Nanosatelita SpooQy-1 zbudowany został z trzech jednostek (3U), przy czym, systemy sterowania, łączności i zasilania zamknięto w jednym z nich (1U), eksperyment kwantowy zajmował zaś pozostałe dwa bloki (2U).

Misja SpooQy-1 powstała na bazie wcześniejszego projektu nanosatelitarnego Galassia (2U), który w 2016 roku wykonał orbitalne testy układu do generowania splątanych stanów kwantowych kwantowych [3]. W ramach tej misji nie udało się jednak dokonać pomiarów samego splątania kwantowego. Z uwagi na stosunkowo niskie koszty zarówno budowy jak i umieszczania na niskiej orbicie okołoziemskiej CubseSatów, przeprowadzone misje torują drogę do realizacji kolejnych nanosatelitarnych projektów kwantowych przez mniejsze grupy naukowców i inżynierów.

SpooQy-deployment
Wypuszczenie nanosatelity SpooQy-1 z Międzynarodowej Stacji Kosmicznej. Źródło

Żeby zrozumieć znaczenie przeprowadzonego na pokładzie nanosatelity SpooQy-1 eksperymentu, warto przybliżyć (lub jedynie odświeżyć) to co rozumiemy przez splątanie kwantowe.   W tym celu, rozważmy foton, czyli podstawową porcję (kwant) pola elektromagnetycznego. Fotony, oprócz odpowiadającej im długości fali, czy też zbioru długości fali składających się na tak zwaną paczkę falową, posiadają również dwa wewnętrzne stopnie swobody związane z ich polaryzacją.  Wypadkowa polaryzacja fotonu ma postać kwantowej superpozycji dwóch stanów bazowych polaryzacji. Jako stany bazowe możemy wybrać przykładowo dwie prostopadłe względem siebie polaryzacje – poziomą (H – horizontal) oraz pionową (V – vertical). Kierunki polaryzacji są ustalone względem referencyjnego układu odniesienia, takiego jaki wyznacza chociażby płaszczyzna stołu optycznego.

Fotony możemy przygotować w stanach o pożądanej polaryzacji liniowej przepuszczając je przez polaryzator.  Jeśli będzie on ustawiony np. w pozycji H, to foton o początkowej dowolnej polaryzacji, po przejściu przez taki polaryzator znajdzie się stanie H. Ciekawą sytuacją jest, kiedy pozycja polaryzatora nie będzie pokrywała się z jedną z pozycji bazowych H i V, leczy np. będzie względem każdej z nich obrócona o 45 stopni. Odpowiada to polaryzacjom diagonalnej (D – diagonal) oraz antydiagonalnej (A – anti-diagonal). Wtedy to, analizując np. fotonu w stanie o polaryzacji D za pomocą analizatora złożonego z polaryzatorów ustawionych w pozycjach H i V, zaobserwujemy tak zwaną redukcji stanu kwantowego. Statystycznie, przepuszczając przez analizator pewną liczną fotonów przygotowanych w stanie D, połowę z nich zarejestrujemy jako będące w stanie H, a połowę w stanie V. Stan o polaryzacji D możemy więc uznać za superpozycję kwantową stanów bazowych H i V, z jednakowym rozkładem prawdopodobieństw równym 1/2. W trakcie aktu pomiaru, jakim jest analiza polaryzacji, stan ten redukuje się do jednego ze stanów bazowych (H,V) i pozostaje w nim.

Przejście od koncepcji superpozycji kwantowej do splątania kwantowego wymaga rozszerzenia powyższej dyskusji do przypadku stanu kwantowego dwóch lub więcej fotonów.  Do wyjaśnienia eksperymentu przeprowadzonego w misji SpooQy-1, wystarczy nam rozważanie splątania kwantowego dwóch fotonów. Tym bardziej, że jest to sytuacja najpowszechniejsza, a wytwarzanie stanów splątanych trzech i większej liczby fotonów jest wciąż raczkującym obszarem doświadczalnej optyki kwantowej.

Splątanie kwantowe jest szczególnym typem superpozycji kwantowej w układzie cząstek, takich jak fotony, prowadzące do występowania nielokalnych korelacji pomiędzy nimi.  Stanami dwufotonowymi, w których możemy zaobserwować splątanie kwantowe są w szczególności stany Bella: Φ+, Φ-, Ψ+ i Ψ-.  Stany te są szczególnie interesujące z tego powodu, że należą do przypadku w którym splątanie kwantowe jest najsilniejsze (mówimy, że są to stany maksymalnie splątane).

Przyjrzyjmy się teraz bliższej przypadkowi fotonów przygotowanych w stanie Φ+, co przedstawia rysunek poniżej. Fotony takie, wyemitowane ze źródła stanu splątanego, propagują się następnie do odległych punktów A i B, w których następuje pomiar. Podobnie jak w omawianym powyżej przypadku pojedynczego fotonu, a priori możemy z równym prawdopodobieństwem oczekiwać zarejestrowania każdego z fotonów w stanie o jednej z dwóch polaryzacji: H lub V. W tym momencie dochodzimy jednak do jednej z  najbardziej enigmatycznych własności mechaniki kwantowej. Mianowicie, jeśli dokonamy analizy polaryzacji jednego z fotonów, to będzie to miało natychmiastowy wpływ na wynik pomiaru przeprowadzonego na tym drugim. Jeśli np. w wyniku pomiaru okaże się, że foton w punkcie A jest stanie o polaryzacji H, to ze stuprocentową pewnością, analizując drugi foton w punkcie B, zaobserwujemy, że znajduje się on również w stanie H. Natomiast, jeśli nie dokonalibyśmy pomiaru w punkcie A, to wynik pomiaru w punkcie B wynosiłby w 50% przypadków H i w 50% przypadków V. Ta natychmiastowa redukcja stanu kwantowego,  odbiegająca od tak zwanego lokalnego realizmu, okazała się trudna do zaakceptowania przez wielu fizyków, co znalazło ucieleśnienie między innymi w paradoksie EPR (Einsteina-Podolskiego-Rosena). Przypuszczano, że mogą istnieć pewne dodatkowe (nieobserwowane) stopnie swobody, tak zwane zmienne ukryte,  znajomość których pozwoliłaby przewidzieć wyniki pomiarów i uniknąć konieczności natychmiastowej redukcji stanu kwantowego pomiędzy odległymi punktami.  Możliwość występowania zmiennych ukrytych, przynajmniej tych lokalnego typu, wyeliminował ostatecznie w latach sześćdziesiątych ubiegłego wieku północnoirlandzki fizyk John Bell, ten sam od którego nazwiska pochodzi wprowadzona powyżej rodzina stanów kwantowych.

Bell
Schemat eksperymentu Bella ze splątaniem kwantowym. Źródło

Rozważając korelacje pomiędzy wynikami pomiarów w punktach A, B wykazał on, że hipoteza zmiennych ukrytych wymaga spełnienia określonej nierówności pomiędzy wynikami pomiarów w różnych bazach. W celu wprowadzenia tej nierówności, oznaczmy wyniki pomiarów w bazie (H,V) w punktach A i B odpowiednio a i b. Natomiast, dla alternatywnego wyboru bazy, np. (D,A), niech wyniki pomiarów  w punktach A i B wynoszą a’ i b’. Korzystając z tych oznaczeń, możemy rozważań cztery różne konfiguracje dla funkcji korelacji, E(a,b), E(a’,b), E(a,b’) i E(a’,b’),  które pozwalają nam zdefiniować wielkość:

S =  E(a,b) – E(a,b’) + E(a’,b) + E(a’,b’),

zwaną parametrem CHSH (Clauser-Horne-Shimony-Holt).  Jak wykazał Bell, teoria lokalnych zmiennych ukrytych wymaga, żeby parametr ten spełnia następującą nierówność (zwana nierównością Bella, lub też nierównością Bella-CHSH):

|S|≤ 2.

Okazuje się jednak, że stany splątane takie jak rozważane tu stany Bella, jawnie łamią tę nierówność, przecząc lokalnemu realizmowi.

Wynik ten wspiera postrzeganie mechanik kwantowej jako teorii w pewnym stopniu nielokalnej. Mianowicie, stan splątany dwóch cząstek kwantowych traktujemy jako jeden obiekt kwantowy i niezależnie od tego czy jedna jego część znajduje się w dużej odległości od drugiej, ingerencja w tą pierwszą poniesie za sobą natychmiastowy skutek dla tej drugiej i vice versa. Jednakże, wbrew pierwotnym obawom, wyrażonym w paradoksie EPR, nie jest w ten sposób możliwa nadświetlna wymiana informacji. Pomimo, że splątanie kwantowe nie pozwala urzeczywistnić wizji znanych chociażby z serialu Star Trek, znajduje ono zastosowanie w komunikacji. Ma to miejsce za sprawą zarówno możliwości przeprowadzania za jej pośrednictwem tak zwanej teleportacji stanów kwantowych jak i kwantowej dystrybucji klucza. Oba te procesy zachodzą z prędkością światła w danym ośrodku, która jest mniejsza lub równa prędkości światła w próżni.

To drugie zastosowanie, czyli kwantowa dystrybucja, stanowiąca jeden z głównych filarów kryptografii kwantowej,  przyciąga szczególnie duże zainteresowanie i stanowiła jedną z głównych motywacji do przeprowadzenia misji SpooQy-1. Wytworzone stany Bella pozwalają m.in. na realizację protokołu Ekerta (E91) kwantowej dystrybucji klucza [4]. W podejściu tym, zaufana jednostka (na przykład nanosatelita) wytwarza pary splątanych fotonów, wysyłając jeden z nich do punku A a drugi do punktu B. Analizując otrzymane fotony, można otrzymać ciągi wyników pomiaru polaryzacji, np. HVHHVHVHV…. Przypisując zaś stanom polaryzacji wartości binarne np. H->0 i V->1, otrzymujemy ciąg bitów 010010101…, który może stanowić sekretny klucz, stosowany w protokołach klasycznej kryptografii symetrycznej. Przygotowując fotony np. w stanie Φ+, mamy pewność, że jeśli odbiorca A zarejestrował ciąg  010010101…, to taki sam ciąg zaobserwuje również odbiorca klucza w punkcie B.  Dodatkowym elementem takiego protokołu jest sprawdzenie na części bitów tego czy nie nastąpił podsłuch transmisji. Po pomyślnej weryfikacji, uzyskujemy wynikającą z praw mechaniki kwantowej gwarancję poufności wymienionego klucza.

Za pomocą satelity SpooQy-1, przeprowadzono testy zarówno wytwarzania jaki i analizy stanów splątanych. Splątane fotony nie były jednak emitowane poza nanosatelitę,  do odbiorców w przestrzeni kosmicznej lub na powierzchni Ziemi.  To już będzie stanowiło przedmiot kolejnych misji. W ramach tego projektu, cały eksperyment został przeprowadzony w obrębie zamkniętego modułu doświadczalnego, zawierającego źródło splatanych fotonów oraz ich analizator.

Do wytworzenia par splątanych kwantowo fotonów wykorzystano, powszechnie stosowany w warunkach laboratoryjnych, proces zwany spontanicznym parametrycznym obniżaniem częstości (SPDC – Spontaneous Parametric Down-Conversion). W zjawisku tym, wysokoenergetyczny (np. ultrafioletowy) foton ulega w optycznie nieliniowym ośrodku konwersji na dwa niżej-energetyczne fotony, występujące już w stanie splątanym. Wyniki przeprowadzonego eksperymentu raportują o wytworzeniu w ten sposób, w warunkach kosmicznych, stanu Bella Φ- (jest to stan bardzo podoby do stanu Φ+, różniący się od niego jedynie względną fazą pomiędzy stanami bazowymi).

BBO
Wytwarzanie splątanych kwantowo par fotonów w procesie spontanicznego parametrycznego obniżania częstości (SPDC – Spontaneous Parametric Down-Conversion). Źródło

W układzie eksperymentalnym, jako źródło fotonów zastosowano diodę laserową (LD) , generującą wiązkę fotonów o długości fali 405 nm (granica światła widzialnego, w stronę bliskiego ultrafioletu) i szerokości spektralnej równej 160 MHz. Do wytworzenia stanów splątanych wykorzystano dwie płytki wykonane z boranu baru (BBO), pomiędzy którymi ustawiono płytkę półfalową (HWP), dokonującą obrotu polaryzacji o 90 stopni. W celu usunięcia z wiązki wejściowego (pompującego) światła laserowego, które nie uległo konwersji w procesie SPDC, zastosowano lustro dichroiczne (DM1), pełniące funkcję filtru.  Natomiast, aby skompensować dyspersję otrzymanych fotonów na drodze optycznej zastosowano kryształ wanadanu (V) itru – YVO4. Tak otrzymany sygnał został rozdzielony do dwóch analizatorów za pomocą kolejnego lustra dichroicznego (DM2). Każdy z nich składał się z ciekłokrystalicznego rotatora polaryzacji (LCPR), polaryzatora (P) oraz fotodiody lawinowej (GM-APD) i analizował jeden z fotonów należący do kwantowo splątanej pary. Zarejestrowane fotony uznawano za pochodzące z jednej splątanej kwantowo pary jeśli zaobserwowano je w oknie czasowym o szerokości ~ 5 ns.

Spooqy_setup
Uproszczony schemat układu doświadczalnego w nanaosatelicie SpooQy-1. Źródło

Za pomocą takiego układu doświadczalnego, przeprowadzono eksperyment w którym wykazano, że wartość parametru S, dla wytworzonych w procesie SPDC stanów Bella przyjmuje wartości większe od klasycznej granicy S=2, a mniejsze od teoretycznie przewidzianej wartości równej S=2√2≈2.83. Uśredniona, otrzymana w ramach eksperymentu wartość to S=2.60±0.07 > 2. Potwierdzono tym samym łamanie nierówności Bella w warunkach orbitalnych. Otrzymany w eksperymencie poziom błędów, odpowiadający parametrowi QBER (Quantum Bit Error Rate) równemu ~ 4 % (około cztery na 100 transmitowanych bitów są błędne), jest wystarczający do tego żeby pomyślnie przeprowadzać kwantową dystrybucję klucza. To wymagać będzie jednak dostosowania układu doświadczalnego do pracy z laserem o większej mocy i układem optycznym umożliwiającym dalekodystansową komunikację optyczną.

MzY1Mzk5OQ
Fizyczna realizacja układu doświadczalnego w nanaosatelicie SpooQy-1. Źródło

Przybliżone tu wyniki grupy z Centrum Technologii Kwantowych w Singapurze, którego dyrektorem do niedawna pozostawał Polak prof. Artur Ekert, to z jednej strony zwieńczenie wielu lat intensywnej pracy a z drugiej preludium do kolejnych, jeszcze szerzej zakrojonych, kwantowych projektów kosmicznych.  Do następnych milowych kroków należą niewątpliwie przeprowadzanie kwantowej dystrybucji klucza pomiędzy dwiema nanosatelitami [5] oraz pomiędzy nanosatelitą a stacją naziemną [6].  Prace w tym kierunku, w szczególności w kontekście wykorzystania łatwiejszej wersji kwantowej dystrybucji klucza nie opartej na splątaniu kwantowym, już trwają. Ponadto, nanosatelitarne eksperymenty ze splątaniem kwantowym w warunkach orbitalnych otwierają możliwość do badań podstawowych, szczególnie w kontekście związku pomiędzy teorią grawitacji w fizyką kwantową.  Warte podkreślenia jest to, że dzięki wykorzystaniu platform typu CubeSat, projekty tego typu stają się możliwie do realizacji również w warunkach polskich.  W kierunku tym zwracamy się ramach działającego na Uniwersytecie Jagielloński w Krakowie zespołu naukowego Quantum Cosmos Lab.

Biblografia

[1] Aitor Villar, et al., Entanglement demonstration on board a nano-satellite, Optica 7, 734-737 (2020).
[2] J-G Ren et al.Ground-to-satellite quantum teleportation, Nature 549, 70–73 (2017).
[3] Zhongkan Tang, et al., Generation and Analysis of Correlated Pairs of Photons aboard a Nanosatellite, Phys. Rev. Applied 5, 054022  (2016).
[4] Artur K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
[5] Denis Naughton, et al., Design considerations for an optical link supporting intersatellite quantum key distribution, Optical Engineering 58(1), 016106 (2019).
[6] R. Bedington, et al.Nanosatellite experiments to enable future space-based QKD missionsEPJ Quantum Technology 2016 3:12 (2016).

         © Jakub Mielczarek

Artykuł został opublikowany na portalu Space24.

Co już potrafią komputery kwantowe?

Internet stwarza szerokie pole do deformacji rzeczywistości. Sposobność ta nie oszczędziła komputerów kwantowych, które w ciągu ostatnich lat wyszły z laboratoriów badawczych do wielkiego świata, również tego wirtualnego.  Niestety, zderzenie praw fizyki kwantowej z prawami internetu (lub też ich brakiem), nie mogło obejść się bez szwanku dla samego przedmiotu naszego zainteresowania – komputerów kwantowych.  Kogo wszak interesują zawiłości techniczne, prawa natury, wyniki badań i analiz, czy też opinie specjalistów? Ważniejsze są przecież emocje bo to one podsycają zainteresowanie.  Te zaś przyczyniły się do wykreowanie obrazu komputerów kwantowych jako cudownych, ale i stanowiących zagrożenie, wszechmogących maszyn dostępnych już jakoby na wyciągnięcie ręki.

Co prawda, to przejaskrawienie pociągnęło za sobą większe inwestycje w technologie kwantowe. Nie oznacza to jednak czegoś jednoznacznie pozytywnego, ponieważ o ile wzmożone zainteresowanie przełożyło się na przyśpieszenie rozwoju technologii to wiotkie podstawy tego zauroczenia stworzyły zagrożenie wystąpienia patologii. W tym przypadku, istnieje chociażby ryzyko tego, że inwestorzy, nie koniecznie dysponujący specjalistyczną wiedzą z zakresu technologii kwantowych, podejmą decyzje inwestycyjne, w uproszczeniu, zwiedzeni tym, że pomysł zawiera słowo klucz – „kwantowy”. Wynikające stąd, rosnące i niespełniane oczekiwania pokładane w technologii mogą zaś wymuszać manipulacje w przekazach marketingowych, mające na celu wygenerowanie sprzedaży czegoś co nie dostarcza jeszcze bezpośrednich korzyści nad dostępnymi rozwiązaniami alternatywnymi. To zaś tylko wzmaga zafałszowanie przekazu, w szczególności tego wyłaniającego się w świecie wirtualnym.

Niestety, zjawisko takie dotknęło rodzącego się rynku komputerów kwantowych, który za wszelką cenę chciałby zacząć odrabiać poczynione niebotyczne inwestycje. Jest to koszt wyjścia technologii kwantowych poza sferę finansowania jedynie z grantów badawczych, nie narzucających wymogu bezpośredniego zwrotu z inwestycji. Oczywiście, nie dotyczy to jedynie technologii kwantowych, ale również innych nowych technologii wymagających ogromnych nakładów na badania i rozwój, takach jak chociażby technologie oparte na grafenie.

Z całego tego zgiełku, wyniknęło jednak ostatecznie coś dobrego. Mianowicie, pierwsze komputery kwantowe stały się dostępne niemal dla każdego.  Nie są one jednak tymi maszynami przed którymi ostrzegają nas doniesienia medialne o wykorzystaniu komputerów kwantowych do łamania szyfrów stosowanych w elektronicznych transakcjach bankowych. Na te będziemy musieli poczekać jeszcze kolejnych kilka dekad [1]. Dostępne już komputery kwantowe oferują bardzo ograniczone możliwości, nie wykraczające ponad to co dają nam te do korzystania z których przywykliśmy. Ponadto, borykają się one z trudnym do przezwyciężenia problemem dekoherencji kwantowej, znacznie ograniczającym ich obecną funkcjonalność, jak i możliwość dalszego skalowania. Pomimo tych przeszkód, możemy już dzisiaj zacząć naszą przygodę z obliczeniami kwantowymi, chociażby po to aby samemu przekonać się o możliwościach kwantowych maszyn. To co już da się z ich pomocą zdziałać postaram się zarysować poniżej.

Chciałbym jednak wcześniej podkreślić, że droga do miejsca w którym się obecnie znajdujemy nie była krótka. Komputery kwantowe nie wyskoczyły jak królik z kapelusza.   Może to zabrzmieć zaskakująco, ale już przed II wojną światową dysponowaliśmy aparatem teoretycznym niezbędnym do zaprojektowania komputera kwantowego. Tak już jest, że fizyka teoretyczna potrafi wyprzedzić inżynierię o dziesiątki, setki, czy nawet o tysiące lat.

Prawie już sto lat temu, w połowie lat dwudziestych ubiegłego wieku, stara teoria kwantów, do której zalicza się orbitalny model atomu Bohra, przekształciła się w mechanikę kwantową, taką jaką znamy ją dzisiaj. Ważnym krokiem w tym procesie było wprowadzenie przez de Broglie’a (1924) nowatorskiej koncepcji fal materii. Następnie, w 1926 roku, Erwin Schrödinger, zabrawszy pracę de Broglie’a oraz jedną ze swoich muz (nie kota), zaszył się na dwa i pół tygodnia w alpejskiej will, po czym pokazał światu, że rozchodzenie się fal materii można opisać równaniem matematycznym – znanym dzisiaj jako równanie Schrödingera.  Tego samego roku, urodzony w ówczesnym Breslau, Max Born zaproponował, że to co opisuje funkcja falowa to w istocie rozkład prawdopodobieństwa. Odsłoniło to probabilistyczną naturę mikroświata, która odgrywa ogromną rolę w technologiach kwantowych. Rok wcześniej, Born razem z Werner’em Heisenberg’iem wprowadzili równoważne sformułowanie macierzowe (operatorowe) mechaniki kwantowej, z którego na codzień korzystają obecnie programiści komputerów kwantowych. Związek mechaniki kwantowej z teorią informacji zaczął się zaś rysować dzięki pracom pioniera informatyki i fizyka matematycznego węgierskiego pochodzenia Johna Von Neumanna (rok 1932). Na odważny krok zaproponowania komputerów opierających swoje działanie na mechanice kwantowej musieliśmy jednak czekać do połowy lat osiemdziesiątych ubiegłego stulecia. Wtedy to, koncepcje taką zaczął poważnie rozważać, zafascynowany pierwszymi komputerami osobistym, znany wszystkim dobrze Richard Feynman [2]. Od tego czasu zaczął się wyścig w stronę zbudowania komputera kwantowego.

Na pierwsze prototypy musieliśmy poczekać kolejną dekadę. W konstrukcjach tych wykorzystano zjawisko jądrowego rezonansu magnetycznego (NMR), stosowane powszechnie w diagnostyce medycznej. Kierunek ten nie pozwolił jednak na stworzenie komputerów przetwarzających więcej niż kilka jednostek informacji kwantowej – tak zwanych kubitów [3].  Przełomowe okazało się wykorzystanie zjawiska fizycznego zwanego nadprzewodnictwem. Jest to zanik oporu elektrycznego niektórych materiałów ochłodzonych do temperatur bliskich zera bezwzględnego. Przykładem naturalnie występującego w przyrodzie nadprzewodnika jest pierwiastek Niob, który to przechodzi do fazy nadprzewodzącej w temperaturze poniżej 9.2 Kelwina. Jeśli z takiego materiału wykonamy pierścień i przepuścimy przez niego prąd elektryczny zadziała on jak elektromagnes, wytwarzając pole magnetyczne. Niezwykłe własności stanu nadprzewodzącego powodują jednak, że strumień pola magnetycznego przez taki pierścień może przyjmować tylko określone (skwantowane) wartości, podobnie jak poziomy energetyczne w atomie. Dwa najniższe energetycznie poziomy wykorzystuje się do stworzenia kubitu. To właśnie na tego typu nadprzewodzących kubitach opiera swoje działanie komputer kwantowy Sycamore firmy Google, na którym w ubiegłym roku po raz pierwszy wykazano eksperymentalnie przewagę czasową maszyny kwantowej nad klasyczną, wykorzystując 53 kubity [4]. Udało się tego dokonać dla tzw. problemu próbkowania (ang. sampling), sprowadzającego się do generowania ciągów bitów z rozkładu prawdopodobieństwa, który w przypadku komputera kwantowego jest określony przez sekwencję operacji wykonanych na kubitach. Komputery kwantowe oparte na kubitach nadprzewodzących rozwijają również firmy takie jak IBM, D-Wave i Rigetti Computing.

Artists-Rendition-Google-Quantum-Processor.
Artystyczna interpretacja komputera kwantowego Sycamore firmy Google.  Źródło

Od kilku już lat, proste (pod względem możliwości, nie zaś konstrukcji) komputery kwantowe działające na kubitach nadprzewodzących udostępnia potentat branży informatycznej – firma IBM. Każdy, za pomocą platformy online Quantum Experience, może spróbować swoich sił w programowaniu procesora 5 i 15 kubitowego. Istotnym ograniczeniem tych maszyn jest jednak nie tylko ilość dostępnych kubitów ale i długość tak zwanego czasu koherencji, który determinuje to ile operacji jesteśmy w stanie na nich wykonać. Niestety, pomimo ogromnej wykonanej pracy, dla procesorów kwantowych działajacych w oparciu o kubity nadprzewodzących, czasy te są nadal stosunkowo krótkie. Dlatego też, wciąż rozwijane są alternatywne kierunki, między innymi wykorzystujące fotony (np. firma Xanadu) oraz pułapki jonowe (np. firma IonQ).

Udostępnione przez IBM komputery kwantowe, nie dostarczają jak dotąd bezpośrednich korzyści obliczeniowych nad maszynami klasycznymi. Działanie komercyjnego 20 kubitowego komputera kwantowego IBM Q System One możemy emulować nawet na smartfonie. Wykładniczy charakter wzrostu ilości zmiennych potrzebnych do opisu stanu komputera kwantowego sprawia jednak,  że emulacji 100 kubitowego komputera nie bylibyśmy już w stanie przeprowadzić nawet na najpotężniejszym superkomputerze klasycznym. Przezwyciężenie problemów związanych z utrzymywaniem stabilnej pracy tych rozmiarów komputerów kwantowych pozwoli wejść w obszar niedostępny dla komputerów klasycznych.

IBM-Q-System-One
Design 20 kubitowego komputer kwantowy IBM Q System One może wzbudzać zachwyt.  Jednak, już nie jego możliwości, które da się osiągnąć na przeciętnym smartfonie.

Zanim to jednak nastąpi, warto zastanowić się nad tym co daje nam możliwość korzystania z istniejących już komputerów kwantowych. Moim zdaniem, do najważniejszych korzyści płynących z dostępu do tych maszyn należą: możliwość nauki pracy z komputerami kwantowymi,  poznawanie niedoskonałości które je charakteryzują i testowanie algorytmów kwantowych (w tym symulacji kwantowych). Zrozumienie niedoskonałości, przejawiających się w postaci błędów, pozwala opracowywać nowe i skuteczniejsze algorytmy tak zwanej kwantowej korekcji błędów. Na dostępnych komputerach kantowych możemy symulować proste kwantowe układy fizyczne, takie jak na przykład molekuły. Jest to domena chemii kwantowej, a symulacje takie pozwalają na przykład wyznaczać energie stanów podstawowych układów atomów. Wykorzystując komputery kwantowe, udało się to zrobić m.in. dla cząsteczki wodoru molekularnego [5]. W przyszłości, symulacje takie będzie można rozszerzyć do skomplikowanych molekuł, co może znaleźć zastosowanie w farmakologii.

Symulacje układów fizycznych na komputerach kwantowych prowadzone są m.in. w moim zespole Quantum Cosmos Lab, który działa na Uniwersytecie Jagiellońskim w Krakowie. Badania te skupiają się na symulowaniu nie zwykłych atomów, ale „atomów przestrzeni” z których może być zbudowana tkanka naszej przestrzeni. Korzystając z komputerów kwantowych firmy IBM, udało nam się pomyślnie zasymulować pojedynczy kwant przestrzeni [6]. Celem jest jednak to by symulować setki i tysiące takich cegiełek, co pozwoliłoby nam zbadań proces formowania się przestrzeni. Komputery kwantowe otwierają drogę do tego by faktycznie to zrobić, musimy się jednak liczyć z tym, że może nam to zająć kolejne 20-30 lat pracy, podążającej za rozwojem komputerów kwantowych.

Kolejna obiecująca możliwość jaka rysuje się za sprawą zastosowania obecnych i spodziewanych w najbliższych latach komputerów kwantowych to kwantowe generatory liczb losowych, wykorzystujące probabilistyczną naturę świata kwantowego. Generatory takie są szczególnie atrakcyjne ze względu na zastosowanie w rozwiązaniach kryptograficznych, związanych z cyberbezpieczeństwem, takich jak generowanie kluczy. Zaleta komputerów kwantowych leży w tym, że losowość wygenerowania klucza może zostać zagwarantowana (certyfikowana) niemożliwością zasymulowania algorytmu generatora na superkomputerze klasycznym.  Algorytmy generujące certyfikowane kwantowe ciągi liczb losowych wykorzystują obwody kwantowe, podobne do tych za pomocą których  firma Google wykazała, przywołaną wcześniej, korzyść (supremację) komputerów kwantowych.

Duże zainteresowanie budzi zastosowanie komputerów kwantowych w obszarach sztucznej inteligencji i uczenia maszynowego. W przyszłości, kwantowe algorytmy uczenia maszynowego mogą stanowić konkurencję do algorytmów klasycznych. Wskazuje na to szereg badań teoretycznych [7]. Jednakże, na chwilę obecną implementacje takich algorytmów są w bardzo wczesnej fazie. Na uwagę zasługuje przykład niedawno przeprowadzonej symulacji prostego modelu neuronu – tak zwanego perceptronu – na 5 kubitowym komputerze kwantowym [8]. Natomiast, dobrym punktem wyjścia do rozpoczęcia przygody z kwantowych uczeniem maszynowym jest platforma PennyLane, udostępniona przez firmę  Xanadu.

Na koniec, warto przywołać również przypadek tak zwanych adiabatycznych komputerów kwantowych. Komercyjnym przykładem takiego komputera są maszyny oferowane przez firmę D-Wave. Można do nich uzyskać dostęp online poprzez platformę Leap.  Komputery takie realizują wyspecjalizowany algorytm związany z poszukiwaniem stanu o najniższej energii (tzw. stanu podstawowego) dla układu kubitów. Algorytm ten pozwala podejmować szereg złożonych zagadnień, takich jak problemy optymalizacyjne i uczenie maszynowe. Komputery te są również doskonałym narzędziem do przeprowadzania eksperymentów fizycznych dla układów wielu atomów [9]. Pomimo dużej (rzędu 2000) liczby kubitów, zjawiska kwantowe ogrywają w nich inną rolę niż w omawianych wcześniej komputerach kwantowych (powodują tzw. tunelowanie kwantowe) i jak do tej pory nie wykazano by komputery te potrafiły rozwiązać problemy zbyt trudne dla superkomputerów klasycznych.  Programując je można się jednak, z pewnością, bardzo wiele nauczyć.

Niewątpliwie, żyjemy w bardzo ciekawych czasach, które można uznać za przedsionek do ery komputerów kwantowych. Pierwsze z nich są już dostępne do użytku za pośrednictwem platform internetowych, otwartych dla wszystkich chcących spróbować swoich sił w ich programowaniu. I choć nie dają one jeszcze bezpośredniej przewagi nad komputerami klasycznymi, pozwalają zmierzyć się ze światem mechaniki kwantowej i algorytmów kwantowych. Osobiście, bardzo cieszy mnie to, że dzięki komputerom kwantowych, niezwykły kwantowy świat, jak dotąd poznawany prawie wyłącznie przez fizyków teoretyków, zaczyna eksplorować coraz większa liczba śmiałków, w tym szczególnie dużo, otwartych na nowe wyzwania, młodych osób. Liczę na to, że to właśnie dzięki nim na dobre zadomowimy się w świecie komputerów kwantowych.

Bibliografia

[1] J. Mielczarek, Technologie kwantowe a cyberbezpieczeństwo, CyberDefence24, 2019.
[2] R. Feynman, QuantumMechanicalComputers, Optics News, Vol. 11, Issue 2, 11–20, 1985.
[3] L. M. K. Vandersypen, et al., Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,  Nature 414, 883–887, 2001.
[4] F. Arute, et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505-510, 2019.
[5] Y. Cao, et al., Quantum Chemistry in the Age of Quantum Computing, Chemical Reviews, 119 (19), 10856-10915,2019.
[6] G. Czelusta,  J. Mielczarek, Quantum simulations of a qubit of space, arXiv:2003.13124 [gr-qc], 2020.
[7] J. Biamonte, P. Wittek, et al., Quantum machine learning, Nature 549, 195–202, 2017.
[8] Tacchino, F., Macchiavello, C., Gerace, D. et al., An artificial neuron implemented on an actual quantum processor, npj Quantum Inf 5, 26, 2019.
[9] R. Harris, et al.,  Phase transitions in a programmable quantum spin glass simulator,
Science, Vol. 361, Issue 6398, 162–165, 2018.

© Jakub Mielczarek

Artykuł został opublikowany na portalu Polish Brief.

Wykładnicza strona świata

Wszystko wskazuje na to, że nie mieliśmy w historii świata sytuacji w której równie świadomie i szeroko ludzkość odczuła potęgę wzrostu wykładniczego, jak ma to miejsce obecnie. I chociaż śmiercionośne pandemie nawiedzały świat w przeszłości, to dopiero dzięki obecnemu stopniowi informatyzacji jesteśmy w stanie tak precyzyjnie, z dnia na dzień, śledzić ich globalny przebieg, niczym notowania na giełdzie.

Jednakże, pomimo powszechnego dostępu do wiedzy i informacji, wykładniczy charakter początkowej fazy rozwoju epidemii wywołanej zarażeniem wirusem SARS-CoV-2 spowodował duże zaskoczenie. Obserwowaliśmy i wciąż obserwujemy, jak w poszczególnych krajach ilość zidentyfikowanych przypadków zarażeń rośnie z tygodnia na tydzień, najpierw od kilku do kilkudziesięciu, następnie do kilkuset, w kolejnych tygodniach do kliku tysięcy, aż do dziesiątek i setek tysięcy. O ile więc, początkowe wzrosty mogą uśpić czujność, prowadząc nierzadko do nieadekwatnych reakcji, to po nietypowo krótkim czasie sytuacja rozwija się do poziomu trudnego do opanowania.

Zachowanie takie wymyka się intuicji naszych mózgów przyzwyczajonych do ekstrapolacji liniowych, co najwyżej parabolicznych, ale nie wykładniczych.     A systematyczne przyrosty o rząd wielkości, w stałym okresie czasu, są właśnie przykładem zależności wykładniczej. Zachowanie takie dotyczy nie tylko początkowej fazy rozwoju epidemii, ale przejawia się w niezliczonej ilości procesów, na przestrzeni skal od mikroświata aż po obserwowalny Wszechświat. Wykładniczość jest więc czymś  powszechnym i ważnym dla zrozumienia otaczającego nas świata. Stwierdzenie to odnosi się nie tylko do zjawisk naturalnych, ale również do opisu pewnych aspektów cywilizacji technologicznej, będącej wytworem aktywności ludzkiej.

W większości przypadków,  zależności wykładnicze umykają jednak naszej percepcji, co ma związek z charakteryzującymi je skalami czasowymi. Są one albo zbyt długie (lata) albo zbyt krótkie (ułamki sekund). Stąd też tak słabo jesteśmy z nimi oswojeni. Obecna epidemia, wywołana koronawirusem, jest na tym tle sytuacją dosyć wyjątkowa gdyż, zarówno charakteryzujące ją skale czasowe (czasy podwojenia) wynoszą typowo kilka-kilkanaście dni (umożliwiając „odczucie” dynamiki procesu),  jak i z uwagi na bezpośrednie tragiczne skutki jakie za sobą niesie, co zaś potęguje nasze zainteresowanie jej przebiegiem. A skoro już takie niesprzyjające okoliczności wystąpiły, postarajmy się je przynajmniej wykorzystać do lepszego zrozumienia zachowań wykładniczych.

Żeby wyjaśnić istotę procesu wykładniczego posłużę się przykładem  bakterii. Bakteria, w ustalonym środowisku, potrzebuje z grubsza stałego czasu, żeby dokonać podziału. W zależności od typu bakterii może on wynosić od kilkunastu minut do nawet doby. Nazwijmy ten czas \tau. A więc, z wyjściowo jeden bakterii, po czasie \tau, otrzymamy dwie bakterie. Każda z tych bakterii, po upływie kolejnego interwału \tau, ulegnie podziałowi, dając łącznie cztery mikroorganizmy. Zatem, jeśli dla czasu t=0 mamy jedną bakterię, to dla czasu t=\tau liczba bakterii wynosi 2, dla t=2\tau liczba ta wynosi 2 \cdot 2=4, dla t=3\tau otrzymamy 2\cdot 2\cdot 2=8, itd., co obrazuje rysunek poniżej:

Graph

Z matematycznego punktu widzenia, jest to przykład postępu geometrycznego z ilorazem ciągu równym 2. A więc, każdorazowo,  po upływie czasu \tau, liczba bakterii podwaja się. Dlatego też, czas \tau nazywamy czasem podwojenia.

Stąd już łatwo dojść do wniosku, że aby wyznaczyć ilość komórek po n podziałach (dla czasu t=n\tau), należy pomnożyć przez siebie n-krotnie czynnik 2, czyli, innymi słowy, musimy wyliczyć 2^n. Wyrażając n poprzez czas t, dostajemy zaś 2^{t/\tau}. Traktując t jako liczbę rzeczywistą, otrzymujemy przykład funkcji wykładniczej o podstawie 2.  W praktyce, jako podstawę funkcji wykładniczej często wykorzystuje się liczbę e=2,71828..., co jest wygodne obliczeniowo. Otrzymaną w ten sposób funkcję wykładniczą nazywamy eksponentą.  Tutaj jednakże, dla uproszczenia, ograniczymy się do przypadku z dwójką.

Dopóki koncentracja bakterii jest niska i dostęp do zasobów nieograniczony, opisany powyżej wzrost wykładniczy dobrze opisuje wzrost populacji. Zależność ta jest  wykorzystywana chociażby w przypadku standardowych testów mikrobiologicznych na szalce Petriego, gdzie jedna bakteria potrzebuje odpowiedniej liczby podziałów, aby rozwinąć się do widocznej nawet gołym okiem kolonii. Opis wykładniczy  zaczyna się jednak załamywać, kiedy ilość namnożonych bakterii staje się odpowiednio duża a dostęp do składników budulcowych, potrzebnych do kolejnych podziałów, zaczyna być ograniczony.  Dobry opis matematyczny takiej sytuacji daje tak zwana krzywa logistyczna, która dla odpowiednio małych wartości czasu pokrywa się z trendem wykładniczym, lecz w pewnym momencie przegina się i następuje „saturacja” na ustalonej wartości.   

Wykresy funkcji wykładniczej (czerwony) oraz krzywej logistycznej (niebieski) przedstawiają rysunki poniżej:

ExpLog

Po lewej stronie znajdują się wykresy na skali liniowej. Po prawej stronie przedstawiono te same funkcje, lecz na skali logarytmicznej, na której funkcja wykładnicza staje się linią prostą.

Podstawowe modele epidemiologiczne, takie jak model SIS [1], z punktu widzenia matematycznego są równoważne powyższemu opisowi rozwoju populacji bakterii. W uproszczeniu, w przypadku takim, czas podwojenia odpowiada średniemu czasowi niezbędnemu do zarażenia przez osobę zakażoną kolejnej osoby. Ograniczając liczbę możliwych kontaktów, można ten czas wydłużyć, spowalniając tempo rozwoju epidemii. Zidentyfikowanie zaś zainfekowanych osób i uniemożliwienie im dalszego rozprzestrzeniania patogenu, może zaś cały proces wygasić. W uproszczeniu, proces taki można opisać właśnie krzywą logistyczną. Jeśli nie podjęto by żadnych środków zapobiegawczych, trend również uległ by wypłaszczeniu (jak dla krzywej logistycznej) z tą różnicą jednak, że nastąpiłoby to dla wartości porównywalnej z liczebnością całej populacji.     

Powyżej skupiliśmy naszą uwagę na wzroście wykładniczym. Równie dobrze możemy jednak mówić o wykładniczym spadku. Powszechnie znanym przykładem takiego zachowania jest rozpad promieniotwórczy.  Weźmy np. N atomów Polonu 210, dla którego czas połowicznego rozpadu wynosi około  \tau=138 dni. Oznacza to, że po czasie  \tau, z początkowych N atomów pozostanie średnio N/2. Po upływie kolejnego \tau, będziemy mieli już tylko N/4 atomów Polonu. Jak widać, to co właśnie robimy, to dzielenie wyjściowej liczby atomów przez kolejne potęgi dwójki. W ogólności, po upływie czasu t,  pozostanie więc n(t)=N/2^{t/\tau}=N2^{-t/\tau} atomów. Jest to przykład tak zwanego zaniku wykładniczego. Nawiasem mówiąc, to właśnie dosyć wyjątkowy (nie za krótki i nie za długi) czas połowicznego rozpadu Polonu 210 stoi za złą sławą tego izotopu, jako wyrafinowanego środka unicestwienia.  Przyjemniejsza strona wykładniczego zaniku przejawia się zaś w opadaniu piany w chłodnym, nasyconym dwutlenkiem węgla napoju dla osób pełnoletnich. Jak wskazują wyniki eksperymentów, czas połowicznego zaniku wynosi w tym przypadku około minuty [2]. Nie warto więc zbyt długo czekać z degustacją.   

Ale zachowania wykładnicze, to nie tylko sprawy przyziemne. Jak wskazują obserwacje astronomiczne, ewolucja objętości naszego Wszechświata przebiega w sposób bliski wykładniczemu, co jest związane z obecnością tak zwanej ciemnej energii, odkrycie której uhonorowano w 2011 roku Nagrodą Nobla w dziedzinie fizyki [3]. Aktualny czas podwojenia dla Wszechświata wynosi kilkanaście miliardów lat.  Ale to nie wszystko, obserwacje astronomiczne wspierają również tak zwany model inflacyjny, w którym młody wszechświat podlegał wykładniczemu “puchnięciu” z niewyobrażalnie małym czasem podwojenia rzędu 10^{-38} sekundy [4].

Około 13.8 miliardów lat później, w pewnym zakątku Wszechświata, rozwinęła się Cywilizacja, tworząca artefakty których poziom złożoności sam zaczął podążać w sposób wykładniczy. Sztandarowym przykładem jest tu prawo Moore’a, opisujące ilość tranzystorów w mikroprocesorze, dla którego podwojenia wynosi w przybliżeniu 2 lata [5]. Podobne prawo spełnia również moc obliczeniowa najszybszego dostępnego na świecie superkomputera, rosnąca z czasem podwojenia równym około 14 miesięcy [6]. Znanym badaczem tego typu zależności jest wynalazca i futurolog Ray Kurzweil. W jego książce The Singularity is Near  można znaleźć wiele przykładów trendów wykładniczych ze świata technologii [7]. Są one niezwykle przydatnym narzędziem futurologii analitycznej, pozwalającym przewidzieć szereg nowych możliwości jakie otworzą się przed nami w perspektywie 10-20 lat.

Na podstawie swoich analiz, Kurzweil doszedł do wniosku, że ilość wytwarzanej przez cywilizację techniczną wiedzy może rosnąć wykładniczo lub też szybciej niż wykładniczo, a kluczowym katalizatorem tego procesu stanie się sztuczna inteligencja. W tym drugim przypadku, model matematyczny przewiduje, że w skończonym czasie, ilość wiedzy będzie dążyć do nieskończoności. Obserwacja ta doprowadziła do sformułowania hipotezy tak zwanej osobliwości technologicznej [7]. To czy faktycznie zbliżamy się do takiego stanu jest kwestią dyskusyjną. Niewątpliwe jednak należy się takiej możliwości starannie przyglądać, gdyż procesy te mogą okazać się kluczowe jeszcze w obecnym stuleciu. Jak to już również podkreśliłem, w przypadku zależności wykładniczych, początki bywają bardzo niewinne. Jednakże, po przekroczeniu pewnego poziomu, wykładniczy charakter zaczyna ujawnia swoją moc. Warto więc zachować czujność.

Dużo, rzecz jasna, zależy również od tego jak nisko leży próg odczuwalności danego procesu. W większości przypadków, by go osiągnąć, wystarczy kilka wielokrotności czasu podwojenia. W przypadku epidemii, przy załóżmy 4-dniowym czasie podwojenia (co jest dobrym przybliżeniem dla wielu lokalnych faz epidemii COVID-19 [8]), zmiana ze 100 na 200 zakażonych w przeciągu 4 dni może nie być jeszcze tak przerażająca.  Natomiast, po kolejnych około 10 dniach spotkamy się z sytuacją kiedy liczba zidentyfikowanych zarażonych równa 1000, w przeciągu kolejnych 4 dni, wzrośnie do 2000. Takie wzrosty zaczynają odsłaniać siłę procesu wykładniczego. Później, niestety, jest już tylko gorzej.

Ważne jest więc, by nie bagatelizować zależności wykładniczych,   oczekując ich rychłego samoistnego „wypłaszczenia”. Jednym z najbardziej niepokojących współczesnych trendów wykładniczych jest skumulowana antropogeniczna emisja dwutlenku węgla do atmosfery [9]. Jak wiadomo, obecność dwutlenku węgla, poprzez absorpcję promieniowania termicznego z Ziemi, prowadzi do efektu cieplarnianego i w konsekwencji do zmian klimatycznych. Miejmy nadzieję, że trudne aktualne doświadczenia pozwolą nam Wszystkim lepiej uzmysłowić sobie znaczenie również tego zagrożenia.

Bibliografia

[1] R. V. Sole, Phase Transitions, Princeton University Press 2011.
[2] A. Leike, Demonstration of the exponential decay law using beer front.  European Journal of Physics, Vol. 23, No. 1, 21-26, 2001.
[3] The Accelerating Universe – Scientific Background on the Nobel Prize in Physics 2011: https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2011.pdf
[4] https://www.astro.caltech.edu/~ccs/Ay21/guth_inflation.pdf
[5] G. E. Moore, Cramming more components onto integrated circuits, Electronics, Vol. 38, No. 8, 1965.
[6] https://www.top500.org/
[7] R. Kurzweil, The Singularity is Near, Penguin Books 2006.
[8] https://ourworldindata.org/
[9] D. J. Hofmann, J. H. Butler, P. P. Tans, A new look at atmospheric carbon dioxide, Atmospheric Environment, Vol. 43, Issue 12, 2084-2086, 2009.

  © Jakub Mielczarek

Artykuł został opublikowany na portalu Polish Brief.

Technologie kwantowe a cyberbezpieczeństwo

Jednym z najważniejszych filarów bezpieczeństwa w cyberprzestrzeni jest kryptografia. Z punktu widzenia jednostki, m.in. to dzięki kryptografii możliwe jest korzystanie z systemów bankowości elektronicznej, dokonywanie zakupów online, zachowanie prywatności w komunikacji internetowej, czy też zapewnienie poufności naszej dokumentacji medycznej w medycznych systemach teleinformatycznych.   Z punktu widzenia Państwa, kryptografia to zaś kluczowy element tarczy chroniącej przed cyberatakami na strategiczne komponenty (zarówno infrastrukturę fizyczną, jak i zasoby cyfrowe) oraz narzędzie umożliwiające wymianę i przechowywanie informacji niejawnej, o podstawowym znaczeniu dla interesu i bezpieczeństwa Państwa.

Rozwój technologii kwantowych, opartych na niezwykłych własnościach mikroświata, ma z punktu widzenia cyberbezpieczeństwa znaczenie dwojakie. Z jednej strony, kwantowe przetwarzanie informacji dostarcza nowej metody prowadzenia ataków na klasyczne systemy kryptograficzne, poprzez tzw. kryptoanalizę kwantową. Państwa lub organizacje, które wejdą w posiadanie zaawansowanych systemów umożliwiających prowadzenie obliczeń kwantowych będą więc dysponowały nowym narzędziem stanowiącym potencjalne zagrożenie dla cyberbezpieczeństwa. Z drugiej zaś strony, technologie kwantowe dostarczają zupełnie nowych rozwiązań kryptograficznych, które mogą pozwolić osiągnąć poziom bezpieczeństwa w wymianie i magazynowaniu informacji, niedostępny z wykorzystaniem kryptografii klasycznej. W szczególności, rozwiązania takie mogą uchronić przed atakami z wykorzystaniem kryptoanalizy kwantowej.    

To czy technologie kwantowe ostatecznie obniżą poziom cyberbezpieczeństwa, czy też tylko go wzmocnią, zależy zarówno od tempa i zakresu postępów w rozwoju technologii kwantowych oraz decyzji państw i organizacji międzynarodowych w zakresie wdrażania rozwiązań odpornych na kryptoanalizę kwantową [1].  Z uwagi na wysokie koszty oraz unikalną wiedzę i doświadczenie, które są niezbędne do rozwoju technologii kwantowych, realne są scenariusze w których zarówno zabezpieczenie cyberprzestrzeni przed atakami, jak i wejście w posiadanie kwantowych narzędzi kryptoanalitycznych, będzie postępowało bardzo niejednorodnie. Stanowić to więc może realne zagrożenie dla krajów nie należących do światowej czołówki w obszarze nauki i techniki.

Kryptoanaliza kwantowa

Zagrożenie związane z kryptoanalizą kwantową wynika z możliwości redukcji tak zwanej złożoności obliczeniowej problemów, na których opierają się algorytmy kryptografii klasycznej. Wiąże się to z występowaniem paralelizmu kwantowego (Dodatek A), który jest możliwy do zrealizowania poprzez wykonanie algorytmów kwantowych na odpowiednio zaawansowanych komputerach kwantowych.  Kwantowa redukcja złożoności jest teoretycznie możliwa zarówno w przypadku kryptografii symetrycznej (z tajnym kluczem), jak i kryptografii asymetrycznej (z kluczem publicznym). Otrzymywany, dzięki algorytmom kwantowym, stopień redukcji złożoności jest jednak zasadniczo różny dla tych dwóch przypadków.  W konsekwencji, niektóre stosowane obecnie algorytmy kryptografii symetrycznej pozostaną niepodatne na kryptoanalizę kwantową. Natomiast, np. wykorzystywane powszechnie w bankowości elektronicznej,  systemach płatniczych, czy też  rozwiązaniach opartych o technologię Blockchain, algorytmy kryptografii asymetrycznej zostaną wystawione na potencjalne zagrożenie.

Przedyskutujmy powyższą kwestię bardziej szczegółowo. W przypadku kryptografii symetrycznej, siła zabezpieczenia opiera się, w dużej mierze, na wielkości przestrzeni tajnego  klucza. Przykładowo, dla stosowanego powszechnie  algorytmu symetrycznego AES (Advanced Encryption Standard) z kluczem 256 bitowym, przestrzeń klucza posiada N = 2256 elementów, co jest w przybliżeniu równe jeden i 77 zer. Przeszukanie tak ogromnego zbioru w poszukiwaniu tajnego klucza jest praktycznie niemożliwe, zarówno korzystając z obecnych, jak i możliwych do przewidzenia przyszłych zasobów obliczeniowych.

Zastosowanie algorytmów kwantowych pozwoli przyśpieszyć proces poszukiwania przestrzeni klucza w ataku siłowym (ang. brute force). Mianowicie, jak pokazał w 1996 roku Lov Grover, wykorzystanie obliczeń kwantowych pozwala zredukować średnią ilość prób potrzebnych do znalezienia elementu w nieuporządkowanym N elementowym zbiorze z N/2 do pierwiastka kwadratowego z N, czyli N1/2. Oznacza to, że w przypadku AES-256, komputer kwantowy będzie wciąż potrzebował wykonać około N1/2=2128 prób w celu znalezienia tajnego klucza. Nawet więc dysponując komputerem kwantowym, na którym zaimplementowany mógłby zostać algorytm Grover’a, siła szyfru pozostanie na poziomie porównywalnym z AES z kluczem 128 bitowym. Jest to zabezpieczenie zupełnie wystarczający dla większości standardowych sytuacji.

Rzecz ma się jednak inaczej w przypadku szyfrów kryptografii asymetrycznej (z kluczem publicznym). Istota kryptografii asymetrycznej opiera się na trudności  obliczeniowej pewnych operacji matematycznych, dla których zaś operacja „przeciwna” jest łatwa do przeprowadzenia. Do najbardziej znanych przykładów algorytmów tego typu zaliczają się DH (Diffie-Hellman), RSA (Rivest-Shamir-Adleman) oraz ECC (Elliptic Curve Cryptography). Algorytm DH jest oryginalnie pierwszą propozycją kryptografii z kluczem publicznym a trudnym problemem jest tutaj znajdowanie tak zwanego logarytmu dyskretnego (logarytmu określonego na skończonym zbiorze liczb). Z kolei, popularny algorytm RSA wykorzystuje złożoność obliczeniową rozkładu liczby na czynniki pierwsze (zagadnienie faktoryzacji). Wadą algorytmów DH i RSA jest konieczność stosowania stosunkowo długich kluczy (obecnie powszechnie stosuje się klucze 2048 bitowe). Problem ten rozwiązuje zastosowanie algorytmów ECC, wykorzystujących problem złożoności logarytmu dyskretnego dla działania zdefiniowanego na krzywej eliptycznej. Poziom bezpieczeństwa porównywalny z DH lub RSA z kluczem 2048 bitwym otrzymamy stosując algorytm ECC z kluczem 224 bitowym. Między innymi z tego powodu, algorytmy ECC znalazły szerokie zastosowanie w technologii Blockchain.

Okazuje się, że trudność obliczeniową na której oparte są przytoczone powyżej algorytmy kryptografii asymetrycznej można sprowadzić do zagadnienia znalezienia okresu pewnej funkcji. O ile jednak, znajdowanie okresu funkcji jest z perspektywy komputerów klasycznych zadaniem trudym obliczeniowo, nie jest już takim dla komputerów kwantowych. Mianowicie, jak pokazał w 1994 roku Peter Shor, obliczenia kwantowe pozwalają zredukować złożoność problemu znajdowania okresu funkcji z  problemu wykładniczego w funkcji ilości bitów danej liczby do problemu wielomianowego klasy BPQ (Dodatek B). Fakt ten jest głównym źródłem zagrożenia związanego z kryptoanalizą kwantową.

CyberSec
Obwód kwantowy dla algorytmu Shora na tle fragmentu książki Georga Orwella 1984, zakodowanej za pomocą kolorów przez Hyo Myoung Kima [cała książka].

W optymalnej konfiguracji, Algorytm Shora dla przypadku z kluczem n-bitowym wymaga rejestru kwantowego zawierającego 2n+3 kubity logiczne. Dla algorytmu RSA-2048 są to więc 4099 kubity logiczne. Jednakże, z uwagi na błędy występujące w fizycznych realizacjach komputerów kwantowych, konieczne jest stosowanie rozbudowanych systemów kwantowej korekcji błędów. Zastosowanie korekcji błędów wymaga użycia co najmniej pięciu fizycznych kubitów do zakodowania jednego kubitu logicznego. Absolutnie minimalna liczba fizycznych kubitów, potrzebnych do przeprowadzenia kwantowej kryptoanalizy algorytmu RSA-2048 na komputerze kwantowym, jest więc rzędu 20 000. W praktyce jednak, konieczne może się okazać wykorzystanie dużo większej ilości kubitów pomocniczych, co może zwiększyć tę liczbę do setek tysięcy lub nawet milionów kubitów. Równie ważną kwestią jest osiągnięcie odpowiednio długiego czasu koherencji, gdyż realizacja powyższego algorytmu będzie wymagać przynajmniej 107 kroków obliczeniowych.

Oszacowane powyżej wielkości mogą wydawać się zupełnie abstrakcyjne z perspektywy dostępnych dzisiaj możliwości przeprowadzania obliczeń kwantowych. Dla przykładu, najbardziej zaawansowany komputer kwantowy firmy Google posiada 53 kubity i jest w stanie wykonać kilkanaście kroków obliczeniowych. Jednakże, przyjmując hipotetyczny wykładniczy charakter rozwoju technologii kwantowych (analogiczny do prawa Moore’a), osiągnięcie poziomu miliona kubitów jest realne w perspektywie 30 lat. Załóżmy, że skala czasowa podwojenia ilości kubitów w procesorze kwantowym będzie wynosiła około 2 lata (podobnie jak obecnie ma to miejsce w przypadku liczby tranzystorów w procesorach klasycznych). W takim przypadku, w kolejnych latach możemy prognozować wartości: 100 (2021), 200 (2023), 400 (2025), 800 (2027), 1600 (2029), 3200 (2031), 6400 (2033), 12800 (2035), 25600 (2037), 51200 (2039), 102400 (2041), 204800 (2043), 409600 (2045), 819200 (2047), 1638400 (2049), … . Zgodnie z tą naiwną ekstrapolacją, poziom milionów kubitów powinien zostać osiągnięty do roku 2050. Istnieją również bardziej optymistyczne prognozy, wskazujące na możliwość nawet podwójnie wykładniczego rozwoju technologii kwantowych („prawo” Neven’a).

W kontekście kryptoanalizy, warto przywołać także przypadek funkcji skrótu (ang. hash functions), które są nieodzownym elementem współczesnych protokołów kryptograficznych.  Do najpowszechniejszych z nich należą: MD4, MD5, SHA-1, SHA-2 i SHA-3. Kryptoanaliza siłowa funkcji skrótu jest zasadniczo podobna do przypadku kryptografii symetrycznej i opiera się na wykorzystaniu algorytmu Grovera. W przypadku SHA-3 ze skrótem 512 bitowym, odporność na tzw. preimage attack jest więc na poziomie algorytmu symetrycznego z kluczem 256 bitowym. Tego samego poziomu jest odporność na ataki kolizyjne. Z uwagi na tę niepodatność na kryptoanalizę kwantową, funkcje skrótu rozpatruje się jako jeden z najbardziej obiecujących komponentów tak zwanej kryptografii postkwantowej.

Kryptografia postkwantowa

Kryptografia postkwantowa [2] jest odpowiedzią na potencjalne zagrożenie związane z  kryptoanalizą kwantową algorytmów klasycznej kryptografii asymetrycznej. Z uwagi na to, że kwantowe przyśpieszenie wykładnicze (Dodatek A) nie występuje w przypadku problemu przeszukiwania przestrzeni klucza, nie istnieją obecnie podstawy do obaw o bezpieczeństwo silnych algorytmów kryptografii symetrycznej, takich jaki AES-256, czy też algorytmów opartych na funkcjach skrótu.

Potencjalne zagrożenie związane z kwantową kryptoanalizą algorytmów kryptografii asymetrycznej nie może jednak zostać zbagatelizowane. Nawet jeśli kwantowe możliwości obliczeniowe umożliwiające kryptoanalizę RSA z kluczem 2048 bitowym pojawią się dopiero za 30 lat, należy podejmować działania zapobiegawcze. Po pierwsze, wynika to z faktu, że proces wdrażania (standaryzacja i implementacja) nowych rozwiązań kryptograficznych jest długotrwały, wymagając zarówno prac badawczych, szeroko zakrojonych testów podatności na kryptoanalizę, jak i samej implementacji w ramach istniejących systemów informatycznych. Po drugie, wiele zaszyfrowanych informacji pozostaje wrażliwymi przez okres kilkudziesięciu lat. Ich przechowywanie (jako szyfrogramy) i odszyfrowanie w momencie pojawienia się odpowiednich możliwości obliczeniowych, może doprowadzić nawet do ogólnoświatowego kryzysu. Dla przykładu, dostępne publicznie mogą stać się dane osobowe, transakcje bankowe, dane medyczne milionów osób, co otworzy szereg możliwości działań natury przestępczej.  Ponadto, zgodnie z Art. 25 ustawy z dnia 22 stycznia 1999 r. o ochronie informacji niejawnych: „Informacje niejawne stanowiące tajemnicę państwową podlegają ochronie, w sposób określony ustawą, przez okres 50 lat od daty ich wytworzenia.” Biorąc pod uwagę możliwość wykorzystania algorytmów kryptografii asymetrycznej do przetwarzania tego typu informacji (chociażby poprzez wykorzystanie kryptografii asymetrycznej do wymiany klucza), realność kryptoanalizy kwantowej w perspektywie 30 lat stawia pod znakiem zapytania bezpieczeństwo przetwarzanej obecnie informacji niejawnej, stanowiącej tajemnicę państwową.

Z uwagi na zagrożenia powyższego typu, w 2016 roku amerykański Narodowy Instytut Standaryzacji i Technologii (NIST) ogłosił program opracowania standardu kryptografii postkwantowej, odpornego na kryptoanalizę kwantową. Proces ten przebiega na zasadzie konkursu, podobnie jak to wcześniej miało miejsce np. w przypadku standardu AES. Obecnie, w drugiej rundzie, rozważana jest pula  26 propozycji. W pierwszej rundzie, z początkowych 250 zgłoszeń wybranych zostało 69 najbardziej obiecujących rozwiązań. Cały proces ma zostać zakończony do roku 2022. Rozpatrywany wachlarz rozważanych algorytmów kryptografii postkwantowej jest szeroki.  Do najbardziej obiecujących kierunków należą zaś:

  • Algorytmy kratowe (ang. lattice-based cryptography)
  • Algorytmy  oparte na kodach korekcyjnych (ang. code-based cryptography)
  • Kryptografia wielu zmiennych (ang. multivariate cryptography)
  • Podpis elektroniczny opary o funkcje skrótu (ang. hash-based signatures)

Z uwagi na subtelną naturę rozwiązań kryptograficznych, standaryzacja jest kluczowym elementem poprzedzającym szeroką implementacji nowych algorytmów. Etap ten  jest długotrwały i powiązany jest z badaniem odporności danych rozwiązań na ataki kryptologiczne. Należy mieć jednak na uwadze to, że nawet pomyślne wyłonienie nowego standardu nie gwarantuje późniejszego długotrwałego  bezpieczeństwa. Wiązać się to może zarówno z odkryciem niezauważonych wcześniej słabości rozwiązań, z pojawieniem się nowych schematów ataków oraz nowymi możliwościami obliczeniowymi. Dla przykładu, zaprojektowany na zlecenie NIST i stosowany od połowy lat siedemdziesiątych ubiegłego wieku symetryczny szyfr DES (z kluczem efektywnie 56 bitowym), okazał się możliwy do złamania już po 20 latach od jego wprowadzenia.

Fakt iż, możliwości kryptoanalizy szyfrów kryptografii postkwantowej są wciąż stosunkowo słabo poznane, istnienie realna obawa, że nawet wyłonione w procesie standaryzacji rozwiązania będą podatne na pewne typy ataków. Dlatego też, w początkowej fazie implementacji wydaje się zasadne opieranie się w jak największym stopniu na dobrze zbadanych elementach obecnych systemów kryptograficznych, takich jak funkcje skrótu lub kody korekcyjne. 

O ile proces standaryzacji prowadzony przez NIST jest w toku, w ramach niezależnych projektów podano już pewne rekomendacje co do algorytmów kryptografii postkwantowej. W szczególności, europejski projekt  PQCRYPTO, finansowany w ramach programu Horyzont 2020, rekomendował AES-256 i  Salsa20 z kluczem 256 bitowym jako postkwantowe algorytmy kryptografii symetrycznej. Dla kryptografii asymetrycznej, rekomendowany został natomiast szyfr McEliece’a, będący przykładem algorytmu opartego na kodach korekcyjnych [3]. 

Certyfikowana kwantowa przypadkowość

Jednymi z komponentów systemów kryptograficznych, mającymi fundamentalne znaczenie z punktu widzenia bezpieczeństwa,  są generatory liczb losowych. W praktyce, są to generatory liczb pseudolosowych, co na przykład w przypadku szyfrów strumieniowych (wykorzystywanych np. do zabezpieczania  transmisji w telefonii komórkowej) jest własnością pożądaną. Jednakże, już w przypadku generowania kluczy (będących ciągami bitów) oczekujemy niepowtarzalnej przypadkowości. Dotyczy to zarówno kluczy wykorzystywanych w kryptografii symetrycznej, jak i asymetrycznej.

Błędy w implementacji generatorów pseudolosowych mogą istotnie wpłynąć na obniżenie bezpieczeństwa, wykorzystujących je algorytmów kryptograficznych. Znanym przykładem jest wykazanie istnienia „tylnej furtki” w generatorze pseudolosowym Dual_EC_DRBG. Ujawnione przez Edwarda Snowdena informacje na temat programu deszyfrażu Bullrun, sugerują, że obecność furtki mogło być  działaniem celowym amerykańskiej National Security Agency (NSA) [4].  O ile więc furtki takie mogą być wprowadzane celowo przez agencje dbające o bezpieczeństwo publiczne, ich obecność stwarza również możliwość wykorzystania przez osoby, instytucje i państwa nieprzyjazne. 

Probabilistyczna natura mechaniki kwantowej stwarza atrakcyjną możliwość budowy generatorów losowych. Co więcej, rozwiązania takie są już dostępne komercyjnie.  Jednakże, otwarte zostaje potencjalne zagrożenie związane z wykorzystaniem  możliwych „tylnych furtek” w tego typu rozwiązaniach. Dlatego też, dąży się do opracowania rozwiązań które będą gwarantowały zarówno losowość, jak i niepodatność na ataki, zarówno na poziomie sprzętu, jak i oprogramowania.

Jednym z pojeść do tego zagadnienia jest wykorzystanie trudności obliczeniowej problemu przewidzenia rozkładu prawdopodobieństwa pomiarów dla odpowiednio dużych pseudolosowo-generowanych obwodów kwantowych. Własność tę można wykorzystać do generowania certyfikowanych kwantowo losowych ciągów binarnych (ang. certified quantum randomness) [5]. Losowość otrzymanego ciągu bitów jest zagwarantowana złożonością obliczeniową problemu przewidzenia z jakim prawdopodobieństwem dany ciąg może zostać wygenerowany przez obwód kwantowy. Ponadto, nawet kiedy źródło generatora obwodów zostałoby upublicznione, wygenerowane wartości losowe zachowają prywatność.

Metoda ta może być pomyślnie stosowana już z wykorzystaniem dostępnych obecnie komputerów kwantowych, posiadających kilkadziesiąt (zaszumionych) kubitów fizycznych. Dowodem na to jest niedawny rezultat otrzymany za pomocą komputera kwantowego opracowanego przez firmę Google. Rozważane zagadnienie próbkowaniem (ang. sampling), które przeprowadzono na 53 kubitowym procesorze może zostać zaadoptowane do zapewnienia certyfikowanej kwantowej przypadkowości [6].

Zastosowanie certyfikowanej kwantowej generacji kluczy może istotnie wzmocnić bezpieczeństwo zarówno konwencjonalnej kryptografii (asymetrycznej i symetrycznej) jak i algorytmów kryptografii postkwantowej. Jest to przykład rozwiązania hybrydowego w którym wykorzystuje się połączenie znanych i możliwych do zastosowania algorytmów kryptografii klasycznej z najnowszymi osiągnięciami w obszarze obliczeń kwantowych.

Kwantowa dystrybucja klucza

Nawet jeśli jest to możliwe w niepraktycznie dużych skalach czasowych, algorytmy kryptografii klasycznej, z wyłączeniem szyfru z kluczem jednorazowym (ang. one-time pad), są zawsze możliwe do złamania. Mechanika kwantowa dostarcza jednakże teoretycznie niepodatnej na kryptoanalizę metody szyfrowania informacji.  Opracowywaniem tego typu rozwiązań zajmuje się kryptografia kwantowa.

Kwantowa dystrybucja klucza (ang. quantum key distribution – QKD) [7] jest, rozważaną w ramach kryptografii kwantowej,  metodą bezpiecznego przesyłania sekretnego klucza za pośrednictwem stanów kwantowych pojedynczych fotonów. Metoda ta wykorzystuje kwantowe własności mikroświata (w szczególności, tak zwane twierdzenie o  zakazie klonowania kwantowego) do przesyłania informacji. Ponieważ przepustowość wykorzystywanych do QKD tzw. kanałów kwantowych nie dorównuje tym osiąganym w klasycznych łączach światłowodowych oraz radiowych, łącza kwantowe wykorzystywane są obecnie do przesyłania sekretnych kluczy, pozwalających zaszyfrować (klasyczną) wiadomość, nie zaś do transmisji samej wrażliwej informacji.  Udostępniony, za pośrednictwem QKD, klucz może być wykorzystany do zaszyfrowania danych np. z użyciem silnego symetrycznego szyfru AES-256.

Kwantowa dystrybucja klucza jest rozwiązaniem,  które zostało już wdrożone do komercyjnego użytku.  Jednakże, dostępne obecnie rozwiązania posiadają jedno kluczowe ograniczenie. Mianowicie, jest to dystans, na który możemy przesłać zabezpieczoną kwantowo informację. Wiąże się to z tłumieniem fotonów w światłowodzie i koniecznością stosowania skomplikowanych tzw. powielaczy kwantowych. Obiecującym rozwiązaniem tego problemu jest przesyłanie fotonów z zakodowaną kwantowo informacją poprzez atmosferę oraz przestrzeń kosmiczną. Udane próby międzykontynentalnej QKD z wykorzystaniem kwantowych technologii satelitarnych udało się przeprowadzić w 2017-tym roku. Obecnie trwają prace nad kilkoma projektami satelitarnymi, które mają na celu rozwój kwantowych technologii związanych z łącznością satelitarną. 

Połączenie światłowodowej oraz satelitarnej łączności kwantowej może pozwolić urzeczywistnić idę tzw. internetu kwantowego – niepodatnego na kryptoanalizę kanału wymiany informacji.  Stworzenie podwalin dla internetu kwantowego to m.in. jeden z filarów, rozpisanego na okres dziesięciu lat (2018-2028), flagowego programu Komisji Europejskiej – Quantum Flagship. Ponadto, w ramach projektu OPENQKD (Open European Quantum Key Distribution Testbed) powstaje obecnie w Europie eksperymentalna sieć do kwantowej dystrybucji klucza, której jeden z węzłów znajdzie się również w Polsce.

Warto w tym miejscu podkreślić, że systemy do kwantowej dystrybucji klucza, choć teoretycznie bezwarunkowo bezpieczne, mogą stać się jednak przedmiotem ataków. Istnieje mianowicie szerokie spektrum możliwych ataków fizycznych, wykorzystujących błędy w implementacji systemów do QKD. Jedną z prób rozwiązania tego problemu jest opracowanie algorytmów kryptografii kwantowej gwarantujących bezpieczeństwo w wymianie informacji, niezależne do wad implementacji fizycznych. Konieczne są jednakże dalsze prace zarówno teoretyczne, jak i eksperymentalne w tym obszarze.

Podsumowanie

Infosfera stała się kluczowym elementem współczesnej aktywności ludzkiej. Jej dynamiczny rozwój doprowadził jednak do pojawienia się zagrożeń zupełnie nowego typu. Dotyczy to zarówno poziomu jednostek, jak i społeczeństw. W konsekwencji, cyberprzestrzeń stała się równoprawnym do wody, lądu, powietrza i przestrzeni kosmicznej, obszarem działań wojennych. Powaga problemu doprowadziła do szerokiego zaangażowania państw i organizacji w obszarze zapewnienia bezpieczeństwa w cyberprzestrzeni. W Polsce, ważnym krokiem stało się sformułowanie w 2015 roku Doktryny Cyberbezpieczeństwa Rzeczypospolitej Polskiej [8]. Elementem realizacji jej założeń jest konsolidacja polskich zasobów  w obszarze cyberbezpieczeństwa i kryptologii w ramach utworzonego w 2019 roku Narodowego Centrum Bezpieczeństwa Cyberprzestrzeni (NCBC), funkcjonującego wcześniej jako Narodowe Centrum Kryptologii (NCK).

Technologie kwantowe, które coraz odważniej wychodzą z obszaru badawczego do fazy wdrożeń, stanowią zarówno potencjalne zagrożenie dla cyberbezpieczeństwa, jak i dają narzędzie dla jego wzmocnienia do bezprecedensowego poziomu. Zagrożenie związane jest głównie z możliwością kryptoanalizy algorytmów kryptografii asymetrycznej (w szczególności RSA i ECC). Natomiast, silne algorytmy kryptografii symetrycznej pozostaną odporne na kryptografię kwantową. W mojej ocenie, realistyczna wydaje się możliwość kryptoanalizy algorytmu RSA z kluczem 2048 bitowym w perspektywie czasowej 30 lat. Warto również mieć na uwadze prawdopodobieństwo opracowania nowych algorytmów, które mogą znaleźć zastosowanie w kryptoanalizie kwantowej.

Odpowiedzią na zagrożenie związane z kryptoanalizą kwantową jest kryptografia postkwantowa. Zadaniem które sobie stawia jest opracowanie algorytmów kryptografii z kluczem publicznym, niepodatnych na ataki kwantowe. W toku jest proces standaryzacji algorytmów kryptografii postkwantowej, po zakończeniu którego (około roku 2023) można spodziewać intensyfikacji w implementacji tego typu rozwiązań. Należy jednak zdawać sobie sprawę z faktu, że algorytmy kryptografii postkwantowej wciąż wymagają testów pod kątem kryptoanalizy, zarówno konwencjonalnej, jak i kwantowej.

Z drugiej strony, technologie kwantowe otwierają obiecującą możliwość implementacji rozwiązań kryptografii kwantowej. Jednym z nich jest kwantowa generacja klucza. Rozwiązania takie stają się możliwe do urzeczywistnienia z wykorzystaniem opracowywanych obecnie komputerów kwantowych. W perspektywie nadchodzącej dekady, certyfikowane kwantowe generowanie kluczy pozwoli wzmocnić bezpieczeństwo kryptografii klasycznej, jak również algorytmów postkwantowych. Kolejnym, bardzo obiecującym, rozwiązaniem dostarczanym przez kryptografię kwantową jest kwantowa dystrybucja klucza. Naziemna i satelitarna sieć kanałów kwantowych (tzw. kwantowy internet) pozwoli na bezwarunkowo bezpieczne przekazywanie sekretnych kluczy. Z ich pomocą, możliwe będzie  późniejsze przesyłanie informacji kanałami klasycznymi, stosując silne szyfry symetryczne.

Budowa infrastruktury do komunikacji kwantowej, która ostatecznie zapewni nowy poziom bezpieczeństwa w przesyle informacji jest zadaniem niezwykle złożonym i wymagającym integracji wielu zasobów i kompetencji. Jej utworzenie wykreuje zupełnie nowe realia dla cyberbezpieczeństwa. Warto w tym kontekście zaznaczyć, że z uwagi skomplikowaną naturę systemów do komunikacji kwantowych i kryptografii kwantowej, ważnym elementem będzie proces szkolenia specjalistów, którzy będą w stanie analizować subtelności stosowanych rozwiązań i przewidywać możliwość występowania nowych zagrożeń.

Przeprowadzona tu analiza jedynie zarysowuje zagadnienie cyberbezpieczeństwa kwantowego, akcentując podstawowe możliwości i zagrożenia. Dalsza szersza dyskusja, łącząca płaszczyzny: polityczną, akademicką, militarną i przedsiębiorczą, jest konieczna w celu wypracowania optymalnych rozwiązań, które pozwolą na wykorzystanie technologii kwantowych do zapewnienia jeszcze wyższego poziomu cyberbezpieczeństwa w Polsce i na świecie.   

Dodatek A – Kwantowy elementarz

Technologie kwantowe tworzy obecnie szerokie spektrum rozwiązań, wykorzystujących kwantową naturę mikroświata, opisywaną przez mechanikę kwantową. Do najważniejszych przykładów należą: systemy przetwarzania informacji kwantowej (komputery kwantowe),  systemy łączności kwantowej (oparte o kryptografię kwantową) i  systemy metrologii kwantowej (np. kwantowe magnetometry).   

Szczególną klasą układów kwantowych, odgrywają kluczową rolę w kwantowym przetwarzaniu informacji, są kubity. Kubity można postrzegać jako kwantowe odpowiedniki klasycznych bitów, mogące występować w kwantowych superpozycjach stanów „0” i „1”. Sytuacja robi się jeszcze ciekawsza kiedy rozważamy wiele oddziałujących ze sobą kubitów. Właśnie takie złożenie kubitów stanowi rejestr komputera kwantowego, na którym, poprzez wykonywanie odpowiednich operacji (unitarnych), przeprowadzane są obliczenia kwantowe. Wyzwaniem związanym z budowaniem tego typu maszyn jest odseparowanie rejestru kwantowego od środowiska zewnętrznego, które zaburza jego kwantową naturę. Wyzwaniem jest również odpowiednie kontrolowanie kubitów i przeprowadzanie na nich operacji. Przez wiele lat, fizycy zmagali się z osiągnięciem odpowiedniego poziomu koherencji kwantowej i sterowalności rejestrów kwantowych. Przełomowe okazało się wykorzystanie nadprzewodzących kubitów, które ostatecznie doprowadziło do eksperymentalnego wykazania przewagi (w wczasie obliczeń) komputera kwantowego nad najsilniejszym dostępnym superkomputerem klasycznym. Udało się to ostatecznie wykazać firmie Google, dla problemu próbkowania ciągów binarnych z zadanym przez obwód kwantowy  rozkładem prawdopodobieństwa [6].

Trudność w emulowaniu obliczeń kwantowych na komputerach klasycznych wiąże się z faktem, że stan układu n kubitów opisywany jest w 2n wymiarowej przestrzeni Hilberta. W konsekwencji, na przykład by opisać układ 100 kubitów należy użyć wektora posiadającego około 1030 składowych. Próba zapisania takiego wektora zarówno w obecnych jaki i możliwych do wyobrażenia przyszłych komputerach klasycznych jest praktycznie skazana na niepowodzenie.  Z drugiej strony, operowanie w 2n wymiarowej przestrzeni Hilberta,  dysponując n kubitami umożliwia wykonywanie wykładniczo rosnącej z n liczby operacji. Na własności tej opiera się tzw. paralelizm kwantowy, mogący w pewnych przypadkach doprowadzić do kwantowego przyśpieszenia wykładniczego (ang. exponential speed-up) w rozwiązaniu pewnych problemów. Z sytuacją taką spotykamy się, w szczególności, w przypadku algorytmu faktoryzacji Shora, znajdującym zastosowanie w kryptoanalizie kwantowej.

Dodatek B – Złożoność obliczeniowa 

Złożoność obliczeniowa, w uproszczeniu określa poziom trudności rozwiązania danego problemu.  Dla przykładu, rozważmy problem znalezienia konkretnego elementu w nieuporządkowanym zbiorze N elementowym. Element taki znajdziemy w średnio N/2 próbach. Czas potrzebny na znalezienie elementu będzie więc skalował się liniowo wraz z liczebnością (mocą) zbioru. Jest to przykład problemu należącego do wielomianowej klasy złożoności – P (ang. Polynomial). Innym  przykładem problemu należącego do klasy P jest mnożenie liczb.

Nie wszystkie znane problemy należą jednak do kasy P, a przynajmniej tak się wydaje. Okazuje się mianowicie, że istnieje cały szereg problemów dla których nie udało się, jak dotąd, zaproponować algorytmów ich rozwiązywania które należałyby do klasy P. Problemy takie określamy mianem NP (ang. Nondeterministically Polynomial). Są to takie problemy dla których znając wynik możemy w czasie wielomianowym zweryfikować czy propozycja wyniku jest rozwiązaniem czy też nie. Przykładem takiego problemu, jest rozkład liczby złożonej na czynniki pierwsze (problemu faktoryzacji). Problemy klasy NP znajdują szerokie zastosowanie w kryptologii. Otwartym i jednym z najważniejszych problemów matematycznych jest odpowiedzenie na pytanie czy faktycznie NPP?

Uogólnienie rozważań do obliczeń kwantowych wymaga wprowadzenia nowych klas złożoności. Na potrzeby tego artykułu, wprowadzimy jedynie klasę BQP (ang. bounded-error quantum polynomial time). Do klasy tej należą problemy, dla których istnieje możliwość znalezienia rozwiązania w czasie wielomianowym, z prawdopodobieństwem co najmniej 2/3 (czyli błędem nie większym niż 1/3). Okazuje się, że kwantowy algorytm Shora pozwala zredukować złożoność obliczeniową problemu faktoryzacji, klasycznie klasyfikowanego jaki problem wykładniczy, do takiej właśnie złożoności. Jest to przykład kwantowego przyśpieszenia wykładniczego.

Bibliografia

[1] M. Mosca,  Cybersecurity in an Era with Quantum Computers: Will We Be Ready? IEEE Security & Privacy, September/October 2018, pp. 38-41, vol. 16
[2] D. J. Bernstein, T. Lange,  Post-quantum cryptography, Nature, 549(7671), 188-194.
[3] PQCRYPTO – Post-Quantum Cryptography for Long-Term Security. Initial recommendations of long-term secure post-quantum systems
[4] D. J. Bernstein, T. Lange, R. Niederhagen, Dual EC: A Standardized Back Door. In: Ryan P., Naccache D., Quisquater JJ. (eds) The New Codebreakers. Lecture Notes in Computer Science, vol 9100. Springer, Berlin, Heidelberg
[5] Acín, A., Masanes, L. Certified randomness in quantum physics. Nature 540, 213–219 (2016).
[6] Arute, F., Arya, K., Babbush, R. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)
[7] A. Shenoy-Hejamadi, A. Pathak, S. Radhakrishna, Quantum Cryptography: Key Distribution and Beyond, Quanta 2017; 6: 1–47
[8] Doktryna Cyberbezpieczeństwa Rzeczypospolitej Polskiej, 2015.

                                                                                                                               © Jakub Mielczarek

Artykuł został opublikowany na portalu CyberDefence24.

Esej o przemijaniu

Życie prowadzi tylko w jednym kierunku – od poczęcia do śmierci. I choć dopuszczalny jest proces przeciwny, to jego prawdopodobieństwo jest tak małe, że nawet w czasie liczonym wiekiem Wszechświata, ewenement taki nie wystąpi. Fizyka określa taką sytuację mianem procesu nieodwracalnego. Procesy takie są, z definicji, niesymetryczne ze względu na odwrócenie czasu: t -> -t. Takim też się zdaje być cały otaczający nasz Świat. Jednakże, wbrew temu co mówi nam nasze codzienne doświadczenie, rzeczywistość na najgłębszym znanym nam poziomie nie rozróżnia przeszłości od przyszłości. A mówiąc precyzyjniej, spełnia tak zwaną symetrię CPT (złożenie sprzężenia ładunku (C), parzystości (P) i odwrócenia czasu (T)). O ile więc sam wymiar czasu istnieje również w fizyce mikroświata, to jego kierunkowość, czyli tak zwana strzałka czasu, wyłania się dopiero rozważając obiekty makroskopowe.

Nie trudno jest podać przykład procesu nie posiadającego strzałki czasu. Jest nim chociażby ruch wahadła matematycznego, które jest oczywiście przypadkiem wyidealizowanym, nie uwzględniającym tarcia. Przyglądając się nagraniu oscylacji takiego wahadła nie będziemy w stanie stwierdzić czy odtwarzane jest ono w przód czy też wstecz w czasie. Sytuacja ulegnie jednak zmianie kiedy przeprowadzimy eksperyment z wahadłem rzeczywistym, charakteryzującym się pewnym tarciem. Oscylacje takiego wahadła będą powoli wygasać, aż ostatecznie ustaną. Odtwarzając nagranie naszego eksperymentu będziemy w stanie z całą pewnością stwierdzić czy zostało one puszczone zgodnie z faktycznym biegiem czasu, czy też nie. Bo przecież nikt nigdy nie zaobserwował by wahadło samo się rozhuśtało, chociaż zdarzenie takie fizyka dopuszcza. Podobnie jednak jak w przypadku życia, jego prawdopodobieństwo jest tak znikome, że w praktyce niemożliwe do zaobserwowania. To co odróżnia wahadło matematyczne od przypadku wahadła rzeczywistego to tarcie, które jest przykładem tak zwanej dyssypacji energii.

Pawel Kuczynski
Ilustracja wahadła rzeczywistego dyssypującego energię poprzez tarcie o ziemię. Obraz Pawła Kuczyńskiego.  Źródło

Dyssypacja to nic innego jak rozpraszanie energii mechanicznej do otoczenia. W procesie tym, użyteczna energia (a precyzyjniej, tak zwana energia swobodna), np. związana z ruchem wahadła którą moglibyśmy wykorzystać do wykonania pracy, zamienia się w chaotyczny ruch cząsteczek, który nazywamy ciepłem. Z ciepła nie jesteśmy w stanie odzyskać włożonej pracy, a przynajmniej nie całej. Sposobem na jej częściowe odzyskanie jest wykorzystanie chłodnicy i zbudowanie silnika cieplnego, który zawsze charakteryzuje się jednak pewną sprawnością.

Znaczenie dyssypacji energii jest dużo głębsze niż to może się na pierwszy rzut oka wydawać. Istnieje mianowicie związek pomiędzy dyssypacją, a informacją. Mówiąc obrazowo, dyssypując energię, rozpraszamy informację z układu do jego otoczenia. Natomiast, co może brzmieć początkowo dosyć nieintuicyjnie, im obficiej dyssypujemy energię tym więcej informacji możemy przetworzyć u układzie. Wyższa dyssypacja to więc większy potencjał do wykonywania obliczeń.

To, że przetwarzanie informacji wiąże się z dyssypacją energii nie powinno nas dziwić. Wszak każdy z nas tego doświadcza trzymając przez dłuższy czas smartfon w dłoni. Jednakże, ciepło smartfona, tabletu czy laptopa, które odczuwamy wynika głównie z oporów przepływu prądu elektrycznego w procesorze. Jak jednak teoretycznie pokazał w 1961 roku Rolf Landauer, istnieje pewna minimalna ilość ciepła, która zawsze zostanie oddana do otoczenia w nieodwracalnym układzie obliczeniowym, nawet jeśli zupełnie zaniedbamy opory elektryczne i innego typu tarcie w układzie. Zjawisko to wiąże się z utratą informacji o elementarnej porcji informacji, którą jest bit. Przewidywanie Landauer’a zostało potwierdzone eksperymentalnie w  2014 roku.

Aby zilustrować powyższą tzw. zasadę Landauer’a, rozważmy operację logiczną na dwóch bitach. Powiedzmy, niech to będzie operacja alternatywy rozłącznej XOR, zdefiniowanej tak, że 0 XOR 0=0, 0 XOR 1=1, 1 XOR 0=1,  1 XOR 1=0. Jak widać, jest to operacja nieodwracalna, ponieważ znając wynik operacji, nie jesteśmy w stanie jednoznacznie stwierdzić, jakie były wartości bitów wejściowych. Np. Jeśli jako wynik otrzymamy „1”, to może to odpowiadać dwóm konfiguracjom bitów początkowych (0,1) i (1,0). Bramka realizująca operację XOR traci więc informację o stanie początkowym. Informacja ta „ukrywana jest” w otoczeniu, co przejawia się jako dyssypacja porcji ciepła. Jeśli natomiast, oprócz stanu końcowego, nasz układ zachowywałby również jeden z bitów wejściowych, z informacji końcowej moglibyśmy odzyskać stan początkowy. Byłby to przykład tzw. obliczeń odwracalnych (bez utraty informacji), które teoretycznie mogą być realizowane przez tzw. komputery kwantowe.

Powyższa dyskusja dotycząca obliczeń i informacji miała na celu podkreślenie silnego związku pomiędzy dyssypacją energii, a tempem przetwarzania informacji. Z drugiej strony, dyssypacja to nieodwracalność a nieodwracalność to, jak sądzimy, strzałka czasu. Pozwala to wywnioskować, że istnieje relacja pomiędzy strzałką czasu a tempem przetwarzania informacji. Czy więc może przepływ informacji jest miarą upływu czasu? Czyż nie stoi to w zgodzie z naszym poczuciem upływu czasu, które zależy od tego jak dużo informacji przetwarzamy? Nie ma przecież lepszej metody na oczekiwanie na spóźniony samolot niż lektura książki. Oraz przeciwnie, wpatrując się w błękitne letnie niebo, możemy wręcz osiągnąć stan „pozaczasowości”.  Nie chciałbym tu wchodzić w kwestię percepcji czasu. To odrębne i złożone zagadnienie. Przywołuję jedynie naturalnie nasuwające się skojarzenia.

Prowadzą nas one również z powrotem w stronę życia, w szczególności do Człowieka.  Czy więc życie, jako proces nierównowagowy, a więc i dyssypatywny jest pewnym systemem przetwarzającym informacje? Bez wątpienia takim jest, o czym świadczą zarówno zachodzące w nim przetwarzanie informacji na poziomie molekularnym jak i na poziomie komórkowym. Nasze myśli to nic innego jak procesowanie informacji, z którą wiąże się dyssypacja energii.

Skąd jednak w życiu pozorna „chęć” dyssypowania energii? Choć to zupełnie fundamentalne pytanie, które wciąż traktowane jest jako otwarte, postaram się tu jednak nakreślić na nie odpowiedź, bazując na najlepszej dostępnej nam wiedzy.

Po pierwsze, życie jest przykładem układu otwartego, mogącego wymieniać energię  i informację z otoczeniem. Jest to, w zasadzie, podstawowy warunek jego istnienia. Dla układów zamkniętych obowiązuje mianowicie druga zasada termodynamiki, która mówi nam, że układy izolowane dążą do stanu tak zwanej równowagi termodynamicznej.  W stanie tym maksymalizowana jest tak zwana entropia, którą często utożsamia się z miarą nieuporządkowania systemu. Zamiast mówić o uporządkowaniu, które to może posiadać wiele miar, warto tu jednak podkreślić, że stan równowagi termodynamicznej, jak sama nazwa wskazuje, to stan równowagowy. Jest on więc symetryczny ze względu na odwrócenie czasu. Obserwując stan równowagi termodynamicznej, będziemy mogli zauważyć pewne fluktuacje takich wielkości jak energia czy też entropia układu. Zarówno jednak wielkości średnie jak i fluktuacje nie wyróżnią strzałki czasu. Ponadto, w stanie równowagi termodynamicznej nie dysponujemy energią swobodną (jest ona minimalna), którą można byłoby dyssypować, a tym samym przetwarzać informacje. Życie więc zdecydowanie takim stanem nie jest.

Żeby istnieć, organizmy żywe muszą trzymać się z dala od stanu równowagi termodynamicznej. A to jest możliwe dzięki ciągłemu wymuszonemu odpływowi entropii z układu. Erwin Schrödinger, jeden z ojców mechaniki kwantowej, w swojej książce „What is Life?” z 1944 roku, w której utworzył fizyczne fundamenty fizyki życia, określił ten konieczny do zaistnienia życia ujemy strumień entropii negentropią.  Negentropia pojawia się, w szczególności, kiedy układ znajduje się „pomiędzy” grzejnicą (źródłem ciepła) a chłodnicą (odbiornikiem ciepła), podobnie jak w silniku cieplnym.

Spotkało nas to szczęście, że Ziemia jest właśnie takim układem otwartym, przez który nieustannie przepływa strumień negentropii. Dzieję się to dzięki temu, że Ziemia odbiera ze Słońca promieniowanie w zakresie głównie widzialnym a wypromieniowuje je w postaci (podczerwonego) promieniowania termicznego. W sytuacji stacjonarnej, ilość energii absorbowanej i emitowanej przez Ziemię są równe. Różnica polega jednak na formach tych energii. Mówimy mianowicie, że promieniowanie absorbowane jest niskoentropowe, natomiast promieniowanie emitowane jest wysokoentropowe. Bilans entropowy pozostaje więc ujemny.

Ten ujemny rozrachunek entropowy umożliwia intensywne przetwarzanie informacji na powierzchni Ziemi, co skutkuje dyssypacją energii. Co więcej, tworzy się hierarchia podsystemów będących układami otwartymi. W szczególności, takim podsystemem Ziemi jest biosfera, której to podsystemem są zarówno sami ludzie jak i tworzona przez nich cywilizacja technologiczna (choć ta zaczyna już wykraczać poza biosferę). Dostępność niskoentropowego pożywienia, takiego jak powstałych w procesie fotosyntezy cukrów,  dzięki któremu życie może funkcjonować jest więc konsekwencją tego, iż Ziemia jako całość jest otwartym, nierównowagowym układem wystawionym na strumień negentropii.

Zagłębienie się w szczegóły działajacych tu mechanizmów jest jednak nie lada wyzwaniem. A to dlatego, że o ile opis stanów równowagowych znany jest doskonale od dziewiętnastego wieku, tak obszar fizyki nierównowagowej to wciąż otwarta karta fizyki. Jednym z prekursorów tej dyscypliny był noblista Ilia Prigogine, który wniósł ogromny wkład zarówno w rozwój, jak i spopularyzowanie fizyki procesów nierównowagowych. To On jako pierwszy zwrócić uwagę na możliwość formowania się złożonych struktur dyssypatywnych. Postęp w tej dziedzinie jest jednak powolny i w dużym stopniu następuje skokowo (dzięki przełomom). Za ostatni z takich milowych kroków można uznać  pokazanie przez amerykańskiego fizyka  Jeremy’ego Englanda nowego związku pomiędzy nieodwracalnością procesów makroskopowych, a ilością dyssypowanej energii. Ponadto,  England wskazał, że przy działaniu periodycznej siły wymuszającej, układ nierównowagowy może dokonywać reorganizacji do postaci zwiększającej dyssypację energii. Co jest zupełnie niesłychane, reorganizacja ta przypomina proces ewolucji darwinowskiej. Wyniki Englanda stanową również wsparcie do tak zwanej zasady maksymalnej produkcji entropii MEP (Maximum Entropy Production), która wyłoniła się w latach osiemdziesiątych ubiegłego wieku z  niezależnych rozważań w takich obszarach jak klimatologia, chemia, i biologia. Zasada ta mówi, że układy znajdujące się z dala od stanu równowagi termodynamicznej dążą do maksymalizacji dyssypacji energii.

Powyższe obserwacje skłaniają do przypuszczenia, że proces ewolucji biologicznej jest przejawem „poszukiwania” przez układ, którym jest powierzchnia Ziemi, a dokładniej biosfera, najbardziej optymalnego sposobu dyssypacji energii. Maksymalizacja dyssypacji energii umożliwia zaś przetwarzanie największej ilości informacji. A patrząc na to samo z drugiej strony, do optymalnej dyssypacji potrzebujemy dużej ilości nieodwracalnych obliczeń. Obliczenia te są tym wydajniej przeprowadzane im bardziej wyspecjalizowane są systemy przetwarzające informację. Wszak mózg może dużo lepiej dyssypować energię niż np. 1,5 kilograma wody. Jednak, osiągnięcie takiej perfekcji w obliczeniach a zarazem dyssypowaniu energii zajęło Naturze około 4 miliardy lat.

Opierając się na powyższym rozumowaniu, możemy dojść do konkluzji, że życie jest przejawem nierównowagowego procesu dążącego do maksymalizacji dyssypacji energii. Człowiek jest natomiast jedną z najbardziej złożonych jednostkowych struktur dyssypatywnych jakie są nam znane. Mechanizm ewolucji, który nas ukształtował, możemy zaś postrzegać jako przejaw optymalizacji procesu dyssypacji. Pewnie częściowo z konieczności, w wyniku skończonych zasobów materii w systemie jaki i poprzez akumulację błędów, proces ten „wypracował” rozwiązanie w postaci śmierci wcześniejszych ewolucyjnie wersji „maszyn dyssypatywnych”. Po co wszak utrzymywać przy życiu stare modele, kiedy zużywają one zasoby negentropii którymi można zasilić nowe, bardziej wydajne, dyssypatory?

Kolejną, poza poziomem jednostek, warstwą osiągania maksimum wydajności procesu dyssypacji jest warstwa cywilizacyjna. Tworząc cywilizację techniczną, Natura jeszcze skuteczniej jest w stanie dyssypować energię. Obserwacja ta dostarcza możliwego, wysokopoziomowego, wyjaśnienia naszej ciągłej woli rozwoju i tworzenia. To, że podjąłem wysiłek napisania tego tekstu jest prawdopodobnie również przejawem dążenia do maksymalizacji procesów przetwarzania informacji, chociaż niewątpliwie nie jest się łatwo z taką perspektywą pogodzić.

Warto ostatecznie podkreślić, że dążenia systemów nierównowagowych do konfiguracji o maksymalnej możliwej dyssypacji energii nie należy postrzegać w kategoriach teleologicznych (dążenia do pewnego ustalonego celu). Jest to raczej proces podobny do osiągania przez układy fizyczne stanu podstawowego, np. poprzez wypromieniowywanie energii. Dążenie do stanu o najniższej energii jest konsekwencją niestabilności stanów wzbudzonych. Analogicznie, stan układu nierównowagowego nie dyssypujący maksymalnie energii można postrzegać jako pewien stan niestabilny. Niestabilność ta powoduje przejście do kolejnej, bardziej optymalnej konfiguracji, która to znowu okazuje się niestabilna, itd. Z uwagi na to, że przestrzeń konfiguracji jest niewyobrażalnie ogromna, cały proces będzie bardzo wolny i złożony. Jest to ciągłe poszukiwanie, w którym trudno jest nawet wskazać konfigurację optymalną (prawdopodobnie jedną z wielu). Jednym z możliwych finałów tego procesu jest osiągniecie granicznej wartości dyssypacji   lub też wyczerpanie się strumienia negentropii. Wtedy to, naszym odległym potomkom, pozostanie znalezienie nowego źródła nieodwracalności albo skazanie na „bezczasowość” stanu równowagi termodynamicznej.

                                                                                                                              © Jakub Mielczarek

Kwantowe technologie kosmiczne

Większość z nas każdego dnia korzysta z jednej z kwantowych technologii kosmicznych – zegarów atomowych, zainstalowanych na satelitach systemów nawigacyjnych, takich jak GPS i  Galileo. Zastosowanie zjawisk kwantowych w branży kosmicznej nie jest więc czymś nowym. Jednakże, ostatnie lata przyniosły szereg obiecujących wyników, które pozwalają spojrzeć na wykorzystanie kwantowej natury światła i materii w warunkach kosmicznych w dużo szerszym kontekście.  Niniejsze opracowanie ma na celu dostarczenie zwięzłego przeglądu głównych możliwości jakie rodzą się na styku mechaniki kwantowej i inżynierii kosmicznej.

Zegary, sensory i metrologia kwantowa

Jak już wspomniałem powyżej, zegary atomowe są najpowszechniejszym przykładem technologii kwantowych wykorzystywanych w warunkach kosmicznych. W szczególności, satelity europejskiego systemu Galileo pracują w oparciu o zarówno tradycyjne zegary Rubidowe jak i precyzyjniejsze pasywne masery wodorowe (odpowiedniki laserów działające w zakresie mikrofal). W przypadku zegara wodorowego, wykorzystywane jest doskonale znane wszystkim astronomom przejście kwantowe pomiędzy poziomami w strukturze nadsubtelnej wodoru, czyli osławiona linia neutralnego wodoru 21 cm, której odpowiada częstotliwość około 1,420 GHz (co można wyprowadzić na gruncie mechaniki kwantowej). Okres oscylacji równy jest więc około 0.704 ns a osiągana dokładność pracy takiego zegara to około 0.45 ns na 12h pracy zegara [1]. Niezwykle dokładny pomiar czasu z wykorzystaniem maserów wodorowych przekłada się na większą precyzję pozycjonowania (sięgający 10 cm promień błędu) systemu Galileo, względem konkurencyjnych systemów GPS, Beidou i GLONASS. Warto dodać, że precyzyjne pomiary czasu mają ogromne znaczenie nie tylko dla nawigacji naziemnej, ale również dla nawigacji statków kosmicznych.

Kolejnego, jednak już nieco mniej oczywistego przykładu zastosowania układu kwantowego w warunkach kosmicznych dostarczają kondensaty Bosego-Einsteina. Kondensaty Bosego-Einsteina są konfiguracjami w których bozonowe stopnie swobody (cząstki o spinie całkowitym) makroskopowo obsadzają ten sam stan podstawowy (stan o najniższej energii).  W konsekwencji, gęstość prawdopodobieństwa poszczególnych cząstek (związana z ich funkcją falową) nabiera interpretacji koncentracji materii w kondensacie i może być poddawana analizie optycznej.  Własność ta znajduje zastosowanie m.in. przy budowie interferometrów atomowych, które okazują się być niezwykle wrażliwe na zmiany natężenia pola grawitacyjnego. Opierające swoje działanie na kondensatach Bosego-Einsteina grawimetry doczekały się już wdrożeń komercyjnych, a ich czułość sięga poniżej 10^{-9} g [2] (g jest przyśpieszeniem grawitacyjnym na powierzchni Ziemi).

Wysoka wrażliwość interferometrów atomowych na zmiany pola grawitacyjnego wygenerowała zainteresowanie przeprowadzaniem eksperymentów w warunkach swobodnego spadku. Badania takie, motywowane zarówno możliwymi zastosowaniami praktycznymi jaki i chęcią lepszego zrozumienia wpływu pola grawitacyjnego na układy kwantowe, zostały przeprowadzone m.in. we wieży swobodnego spadku w Bremie [3].  W 2017 roku udało się natomiast zrealizować pierwszą kosmiczną misję z wykorzystaniem kondensatu Bosego-Einsteina. Eksperyment ten przeprowadzono z pomocą rakiety MAIUS-1, wykonującej lot paraboliczny i osiągającej pułap około 243 km nad poziomem morza [4].

BEC
Schemat rakietowego eksperyment z kondensatem Bosego-Einsteina, przeprowadzonego w 2017 roku . Źródło

Powodzenie misji stanowi ważny krok w stronę grawimetrii satelitarnej opartej na wykorzystaniu kondensatów Bosego-Einsteina.  Ma to również znaczenie w kontekście zrozumienia pewnych aspektów oddziaływania (klasycznego) pola grawitacyjnego na układy kwantowe. Watro również podkreślić, że opracowane pod kątem eksperymentu rozwiązania inżynieryjne będą mogły znaleźć szersze zastosowanie w ramach kwantowych technologii kosmicznych. Przeprowadzenie eksperymentu wiązało się bowiem z koniecznością dostosowania skomplikowanego układu doświadczalnego do wymogów stawianych przed technologiami kosmicznymi (m.in. odporność na wibracje i przeciążenia, ograniczenia na rozmiary układu). Warto w tym miejscu zaznaczyć, że wytworzenie kondensatu Bosego-Einsteina wymaga ochłodzenia materii do skrajnie niskich temperaturach, przyjmujących typowo wartości rzędu ułamków mikrokelwinów.

Z punktu widzenia badań podstawowych, interferometry atomowe oparte na kondensatach Bosego-Einsteina rozważane są również w kontekście budowy nowego typu naziemnych i kosmicznych detektorów fal grawitacyjnych [5].   Zanim jednak takie rozwiązania powstaną, własności mechaniki kwantowej zostaną wykorzystane w celu redukcji szumu w obecnie przygotowywanym kosmicznym obserwatorium fal grawitacyjnych LISA. Już teraz, w celu obejścia problemu szumu śrutowego w naziemnych interferometrycznych obserwatoriach fal grawitacyjnych stosuje się tak zwane ściśnięte stany kwantowe światła [6]. Podejście to jest przykładem metrologii kwantowej, wdrożonej już w warunkach ziemskich, a której implementacja w misjach satelitarnych pozostaje jedynie kwestią czasu.

Komunikacja kwantowa

Niewątpliwie, wzbudzającym największe emocje i oczekiwania kierunkiem rodzącym się na styku inżynierii kosmicznej i mechaniki kwantowej jest tak zwana łączność kwantowa (o której pisałem m.in. we wpisie kwantowa łączność satelitarna).  W istocie, jest to wykorzystanie stanów kwantowych pojedynczych fotonów do przesyłania informacji. Ponieważ jednak przepustowość, powstałych w ten sposób, kanałów kwantowych nie może konkurować z przepustowością dostępnych łączy klasycznych, kanał kwantowy wykorzystywany jest jedynie do wymiany tak zwanego sekretnego klucza (będącego ciągiem bitów). Klucz ten umożliwia zastosowanie silnych algorytmów klasycznej kryptografii symetrycznej (takich jak AES-256) dla danych przesyłanych drogą konwencjonalną. Podejście takie nosi nazwę kwantowej dystrybucji klucza (ang. quantum key distribution – QKD) i stanowi jeden z filarów kryptografii kwantowejZaletą takiego rozwiązania jest, wynikająca z zasad mechaniki kwantowej, teoretyczna niepodatność protokołów na ataki (w praktyce, istnieją jednak możliwości ataków fizycznych na systemy kryptografii kwantowej).

Z uwagi na wykładniczne tłumienie sygnału kwantowego w światłowodach, wykorzystanie  przestrzeni kosmicznej daje obecnie jedyną możliwość przeprowadzenia kwantowej dystrybucji klucza na odległościach kilkuset i kliku tysięcy kilometrów.  Pierwszej tego typu satelitarnej komunikacji kwantowej dokonano w 2017 roku z wykorzystaniem chińskiego satelity Micius [7].

QDK
Zrealizowane, obecne i planowane misje satelitarne przeprowadzające kwantową dystrybucję klucza. Źródło

Rozwiązania satelitarne w skali satelity Micius są niezwykle skomplikowane i kosztowne. Aby więc, przy ograniczonych zasobach, przyśpieszyć prace nad satelitarną komunikacja kwantową, grupy badawcze skłaniają się obecnie do dużo tańszych rozwiązań nanosatelitarnych, w szczególności w standardzie CubeSat. Eksperymenty te mają zarówno na celu przetestowanie pracy systemów optyki kwantowej w warunkach kosmicznych jak również samą łączność kwantową pomiędzy satelitą z stacją naziemną.

Do kategorii misji testujących same układy optyczne (bez łączności) można zaliczyć nanosatelitę Galassia (2U) [8], za pomocą której w 2015 roku przeprowadzono testy systemu Spontaneous Parametric DownConversion (SPDC), wytwarzającego splątane stany kwantowe mające zastosowanie w protokole Ekerta E91.  Kierunek ten jest rozwijany obecnie ramach cubesata SpooQySat (3U) [9]. Do misji nanosatelitarnych mających na celu przetestowanie łączności kwantowej możemy natomiast zaliczyć proponowane projekty takie jak Nanobob (12U) [10] i Q3Sat (3U) [11]. Są one zaprojektowane w konfiguracji uplink. Ich konstrukcja nie wymaga więc instalowania systemu do przygotowywania stanów kwantowych a jedynie prostszy układ detekcyjny. Z drugiej strony jednak, rozwiązanie takie jest mniej korzystne z punktu widzenia czynnika atmosferycznego. Mianowicie, w przypadku  konfiguracji downlink, turbulencje atmosferyczne wpływają na kierunek propagacji fotonów dopiero na końcowym etapie drogi, powodując jedynie nieznaczne poszerzenie wiązki. Natomiast, w przypadku konfiguracji uplink, kierunek propagacji fotonów jest najpierw zaburzony przez czynnik atmosferyczny,  po czym dewiacja od wyjściowej osi optycznej narasta w trakcie jego dalszej propagacji. Dlatego też, zarejestrowanie fotonu wymagać będzie większej średnicy zwierciadła. 

Ciekawym wynikiem w kontekście komunikacji kwantowej było niedawne wykorzystanie retroreflektoru zainstalowanego na jednym z satelitów należących do systemu GLONASS do odbicia pojedynczych fotonów [12]. Wyniki tego eksperymentu rodzą nadzieję na przyszłe wykorzystanie pasywnych układów optycznych umieszczonych na satelitach do prowadzenia komunikacji kwantowej. Pozwoliłoby to znacznie uprościć konstrukcję i obniżyć koszty satelitów do kwantowej  dystrybucji klucza, przenosząc środek ciężkości złożoności technologicznej takich systemów na powierzchnię Ziemi.

Warto zaznaczyć, że komunikacja kwantowa z uwagi na wykorzystanie światła laserowego wpisuje się również w kierunek komunikacji laserowej, dostarczającej w przypadku łączności klasycznej dużo większych przepustowości niż łączność radiowa (co jest prostą konsekwencją mniejszej długości fali). Obszar ten jest obecnie rozwijany w Europie w ramach projektu ESA ARTES ScyLight. Postęp w technologii kwantowej łączności satelitarnej (szerzej – kwantowego internetu) oraz metrologii kwantowej jest również obecnie wspierany m.in. w ramach programu flagowego Komisji Europejskiej Quantum Flagship.

Teleportacja kwantowa i efekty relatywistyczne

Nie można utworzyć idealnej kopii (klonu) nieznanego stanu kwantowego, co stanowi fundament bezpieczeństwa komunikacji kwantowej. Możliwe jest natomiast dokonanie jego kwantowej teleportacji (przesłania stanu kwantowego z prędkością światła), wykorzystując połączenie kanału kwantowego oraz klasycznego. Teleportacja kwantowa stanowi bardzo ważny element systemów przesyłania i przetwarzania informacji kwantowej. Jej eksperymentalnego potwierdzenia dokonano po raz pierwszy w 1997 roku [13]. Po 20 latach od tego przełomowego momentu, w 2017 roku, przeprowadzono pierwszą teleportację stanu kwantowych fotonu z powierzchni Ziemi na niską orbitę okołoziemską [14]. W ramach tego eksperymentu dokonano teleportacji sześciu różnych typów stanów kwantowych fotonu. W każdym z przypadków zaobserwowano poziom wierności (ang. fidelity) przesłanych stanów przekraczający wartość dla najlepszej strategii klasycznej, co potwierdza realność przeprowadzonego protokołu teleportacji.

Teleportation
Układ eksperymentalny za pomocą którego w 2017 roku przeprowadzono teleportację stanu kwantowego z powierzchni Ziemi na niską orbitę okołoziemską. Źródło

Jak już wcześniej zaznaczono, wykorzystanie zjawisk kwantowych w warunkach kosmicznych dostarcza zarówno narzędzi do badania zjawisk grawitacyjnych (np. detekcja fal grawitacyjnych) jak również pozwala empirycznie eksplorować pewien obszar oddziaływania (klasycznego) pola grawitacyjnego na układy kwantowe. Dotyczy to przede wszystkim wpływu pola grawitacyjnego na ewolucję układu kwantowego. Okazuje się, że efekty związane z geometrią czasoprzestrzeni mogą mieć niezaniedbywalny wpływ na zachowanie układów kwantowych w pobliżu Ziemi. Rozważania te, w szczególności, dotyczą kwantowej teorii pola na przestrzeniach zakrzywionych. Teorię tę stosujemy głównie do opisu promieniowania czarnych dziur oraz pierwotnych zaburzeń kosmologicznych, jednakże kwantową teorię pola na przestrzeniach zakrzywionych możemy wykorzystać również do opisu paczek falowych fotonów wykorzystywanych w komunikacji kwantowej. Co więcej, bardzo dobre przybliżenie geometrii czasoprzestrzennej w pobliżu Ziemi dostarcza metryka Schwarzschilda, opisująca nierotujące czarne dziury (w przypadku Ziemi, promień Schwarzchilad wynosi ok. 9 mm). Wykorzystując tę metrykę można np. przewidzieć poziom szumu w kanale kwantowym wynikający z grawitacyjnego przesunięcia ku czerwieniCo ciekawe, wartość skumulowanego efektu relatywistycznego (grawitacyjne przesunięcie ku czerwieni + relatywistyczny efekt Dopplera) może prowadzić do błędów w komunikacji kwantowej sięgających ~1% [15]. Taki wkład nie będzie mógł zostać pominięty przy planowaniu przyszłych satelitarnych systemów do kwantowej dystrybucji klucza, podobnie jak uwzględnienie efektów relatywistycznych jest dzisiaj niezbędne do osiągnięcia odpowiednio wysokiej precyzji systemów nawigacji satelitarnej.

Podsumowanie

Kwantowe technologie coraz odważniej wkraczają w świat branży kosmicznej, skutkując kształtowaniem się nowej fascynującej dziedziny – kwantowych technologii kosmicznych. Jako główne praktyczne zastosowania tego kierunku rozwojowego  rysują się obecnie: precyzyjne pomiary czasu (nawigacja), pomiary grawimetryczne oraz komunikacja kwantowa. Ponadto, kosmiczne technologie kwantowe dostarczają narzędzi do prowadzenia nowych eksperymentów w zakresie badań podstawowych takich jak: detekcja fal grawitacyjnych i  wpływ pola grawitacyjnego na zjawiska kwantowe. Szczególnie interesująca jest możliwość urzeczywistnienia wizji satelitarnego internetu kwantowego, który dostarczyłby niepodatnego na kryptoanalizę sposobu wymiany szczególnie wrażliwych informacji. Wprowadzenie takiego rozwiązania stanowiłoby odpowiedź na obecne i przyszłe zapotrzebowanie zarówno cywilne jak i wojskowe. Na drodze do osiągnięcia tego celu stoi wiele wyzwań, zarówno natury technicznej jak i organizacyjnej (m.in. związanej z finansowaniem tak ambitnych przedsięwzięć).  Należy być również świadomym ograniczeń takiego systemu, m.in. wynikających z możliwości zakłócenia jego pracy zarówno poprzez naturalne czynniki atmosferyczne jak i  wywołane celowo, sztuczne, zakłócenia.   

Pozwolę sobie na koniec dodać, że warunki kosmiczne stanowią całkiem dogodne środowisko dla systemów kwantowych. Próżnia kosmiczna dostarcza mianowicie odpowiednią izolację układów kwantowych przed niepożądanym wpływem środowiska (które prowadzi do dekoherencji układów kwantowych). Wiązki fotonów mogą zaś bez przeszkód propagować informację kwantową poprzez przestrzeń kosmiczną. Stwarza to nadzieję na rozwój kwantowych technologii kosmicznym, nie tylko w najbliższym otoczeniu Ziemi ale również w bardziej odległych obszarach. Z teoretycznego punktu widzenia, dopuszczalne jest “rozpięcie” kanału kwantowego chociażby pomiędzy Ziemią (lub orbitą okołoziemską) a Księżycem. Pozwoliłoby to m.in. na pobieranie informacji kwantowej bezpośrednio ze zlokalizowanych na Księżycu sensorów kwantowych i przetwarzanie informacji kwantowej bez konieczności jej “tłumaczenia” na informację klasyczną. Jednym z zastosowań takiego rozwiązania mogłaby być budowa kosmicznych interferometrycznych teleskopów optycznych, wykorzystujących teleportację stanów kwantowych światła [16]. Otrzymana syntetyczna apertura takich teleskopów byłaby nieporównywalna z jakąkolwiek istniejącą obecnie, dając możliwość prowadzenia obserwacji optycznych z niespotykaną rozdzielczością kątową. To oczywiście wciąż jedynie śmiałe pomysły, dopuszczalne jednak przez fizykę i nie aż tak odległe z technicznego punku widzenia. Od nas zależy to czy kiedykolwiek się urzeczywistnią.

Bibliografia

  • [1] https://www.esa.int/Our_Activities/Navigation/Galileo/Galileo_s_clocks
  • [2] V. Menoret et al., Gravity measurements below 10−9 g with a transportable absolute quantum gravimeterScientific Reports  8, Article number: 12300 (2018
  • [3] H. Müntinga et al., Interferometry with Bose-Einstein Condensates in Microgravity, Phys. Rev. Lett. 110 (2013) no.9, 093602 [arXiv:1301.5883]
  • [4] D. Becker et al.Space-borne Bose-Einstein condensation for precision interferometr, Nature 562, 391–395 (2018) [arXiv:1806.06679]
  • [5] S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich and S. Rajendran, Gravitational Wave Detection with Atom Interferometry, Phys. Lett. B 678 (2009) 37 [arXiv:0712.1250]
  • [6] LIGO Scientific Collaboration, Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Photonics 7, 613–619 (2013) [arXiv:1310.0383]
  • [7] Sheng-Kai Liao, et al., Satellite-relayed intercontinental quantum network, Phys. Rev. Lett. 120, 030501 (2018) [arXiv:1801.04418]
  • [8] Z. Tang, et al., Generation and Analysis of Correlated Pairs of Photons aboard a Nanosatellite, Phys. Rev. Applied 5 (2016) no.5, 054022 [arXiv:1603.06659]
  • [9] R. Bedington et al.Nanosatellite experiments to enable future space-based QKD missions, EPJ Quantum Technology 2016 3:12
  • [10] E. Kerstel et al.Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration, EPJ Quantum Technology 5, Article number: 6 (2018)  [arXiv:1711.01886]
  • [11] S. P. Neumann et al.Q3Sat: quantum communications uplink to a 3U CubeSat—feasibility & design, EPJ Quantum Technol. (2018) 5: 4 [arXiv:1711.03409]
  • [12] L. Carderaro et al.,  Towards Quantum Communication from Global Navigation Satellite System, Quantum Sci. Technol. 4, 015012 (2019) [arXiv:1804.05022].
  • [13] D. Bouwmeester et al., Exerimental quantum teleportation, Nature 390, 575–579 (1997) [arXiv:1901.11004]
  • [14] J-G Ren et al.Ground-to-satellite quantum teleportation, Nature 549, 70–73 (07 September 2017) [arXiv:1707.00934]
  • [15] D. E. Bruschi, T. Ralph, I. Fuentes, T. Jennewein and M. Razavi, Spacetime effects on satellite-based quantum communications, Phys. Rev. D 90 (2014) no.4, 045041. [arXiv:1309.3088]
  • [16] E. Khabiboulline et al., Quantum-Assisted Telescope Arrays [arXiv:1809.03396]

@ Jakub Mielczarek

 

Kwantowa dystrybucja klucza

W moich wcześniejszych wpisach kilkukrotnie odwoływałem się do kwantowej dystrybucji klucza (KDK), będącej jednym z głównych filarów kryptografii kwantowejMiało to miejsce w kontekście omawiania takich zagadnień jak: kwantowa łączność satelitarna, internet kwantowy oraz bezpieczeństwo kryptowalut (wpisy: Kwantowa łączność satelitarna, Dwanaście technologii jutra i Kryptowaluty-Kwanty-Kosmos). Niniejszy wpis można potraktować jako uzupełnienie techniczne tych rozważań. Poniżej, przedstawię fizyczne podstawy na których opiera się kwantowa dystrybucja klucza oraz omówię, wprowadzony w 1984 roku, protokół Bennetta-Brassard BB84. Jest to najbardziej znany i historycznie pierwszy przykład protokołu KDK opartego na superpozycji kwantowej.  W późniejszych latach, wprowadzono także protokoły oparte na innych własnościach mechaniki kwantowej, m.in. na splątaniu kwantowym (np. protokół E91). Dyskusja szerokiego spektrum rozważanych obecnie protokołów kryptografii kwantowej wykracza poza ramy tego wpisu. Czytelnika zainteresowanego zapoznaniem się z pełniejszym obrazem tematu zachęcam do przestudiowania np. przeglądowego artykułu arXiv:1802.05517. Tytułem wstępu dodam jeszcze, że do zrozumienia niniejszego tekstu przydatna jest znajomość zasad mechaniki kwantowej. Niezapoznanego z nimi Czytelnika zachęcam do przestudiowania mojego wpisu Elementary quantum computing oraz znajdujących się w nim odnośników.

Zacznijmy więc. W największym skrócie, kwantowa dystrybucja klucza pozwala na, jak mówimy, bezwarunkowo bezpieczną wymianę klucza w oparciu o własności mechaniki kwantowej. To w jaki sposób fizyka mikroświata pozwala zapewnić “bezwarunkowe bezpieczeństwo”, postaram się wyjaśnić poniżej.  Jak to również zostanie dokładniej omówione w dalszej części tekstu, przepustowość wykorzystywanych do KDK tzw. kanałów kwantowych nie dorównuje tym osiąganym w klasycznych łączach światłowodowych oraz radiowych. Z tego też powodu, łącza kwantowe wykorzystywane są obecnie do przesyłania sekretnych kluczy, pozwalających zaszyfrować (klasyczną) wiadomość, nie zaś do transmisji samej wrażliwej informacji.  Udostępniony, za pośrednictwem KDK, klucz może być wykorzystany do zaszyfrowania danych np. z użyciem bardzo silnego symetrycznego szyfru AES 256 Przykładową architekturę systemu do kwantowej dystrybucji klucza, zawierającą zarówno kanał kwantowy (do przesyłania klucza) oraz kanał klasyczny (do przesyłania zaszyfrowanych danych oraz informacji pomocniczych), przedstawia rysunek poniżej:

QKD.gif
Przykładowa architektura systemu do kwantowej dystrybucji klucza z kanałem kwantowym oraz kanałem klasycznym.  Źródło

W przypadku kanału klasycznego opartego o łącze światłowodowe, zaszyfrowana informacja przesyłana jest za pomocą światła. Do przesłania klucza poprzez kanał kwantowy również wykorzystywane jest pole elektromagnetyczne. Z tą jednak różnicą, że odbywa się to za pośrednictwem nie klasycznych impulsów  lecz pojedynczych kwantów światła, czyli fotonów. Do zakodowania informacji kwantowej wykorzystywane są zaś stany polaryzacji światła. Przedyskutujmy to bardziej szczegółowo. Mianowicie, światło docierające do nas, na przykład, ze Słońca lub z żarówki nie jest spolaryzowane. Na poziomie klasycznym,  oznacza to, że światło tego typu składa się z fal elektromagnetycznych oscylujących jednakowo we wszystkich kierunkach  prostopadłych do osi propagacji światła.  Żeby dokonać selekcji fal elektromagnetycznych, których wektor natężenia pola oscyluje w wybranym przez nas kierunku, stosujemy polaryzator. Przepuszczając niespolaryzowane światło przez polaryzator liniowy dokonujemy jego polaryzacji.  Jeśli za polaryzatorem liniowym umieścilibyśmy kolejny podobny polaryzator, jednakże z osią polaryzacji ustawioną prostopadle do tej pierwszej, dokonalibyśmy całkowitego wygaszenia światła. Zachęcam do przeprowadzenia tego prostego eksperymentu np. pozyskując dwa polaryzatory liniowe z powierzchni wyświetlaczy ciekłokrystalicznych zepsutego zegarka lub kalkulatorka.

Zgodnie z regułą dodawania wektorów,  każdą falę elektromagnetyczną można zapisać jako sumę dwóch fal elektromagnetycznych, prostopadłych do siebie w płaszczyźnie polaryzacji. Czyli inaczej, każdą polaryzację liniową światła można opisać jako superpozycję dwóch normalnych względem siebie polaryzacji, nazwijmy je horyzontalną H (ang. horizontal) oraz wertykalną V (ang. vertical).

Polar
Polaryzacja światła niespolaryzowanego z wykorzystaniem polaryzatora liniowego.

Przeprowadźmy teraz następujący eksperyment myślowy. Załóżmy, że dysponujemy źródłem światła niespolaryzowanego oraz zestawem płytek półprzepuszczalnych tłumiących światło. Ustawiające je kolejno na osi optycznej, możemy doprowadzić do sytuacji w której  przez zestaw płytek przedostawać się będą jedynie pojedyncze fotony. Możemy w tym miejscu zapytać co się stanie gdy pojedynczy foton napotka polaryzator światła?  Okazuje się, że foton taki z pewnym prawdopodobieństwem może przejść przez polaryzator, jak również z pewnym prawdopodobieństwem może zostać przez niego zatrzymany. Jest to konsekwencją kwantowej natury fotonu, co przejawia się istnieniem fotonu w stanie kwantowym |\Psi \rangle, będącym superpozycją kwantową dwóch polaryzacji, co zapisujemy jako:

|\Psi \rangle = \alpha |H \rangle +\beta |V \rangle,

tak, że |\alpha |^2+|\beta|^2=1. Prawdopodobieństwo znalezienia fotonu w stanie |H \rangle równe jest P(H)=|\alpha|^2, natomiast prawdopodobieństwo znalezienia fotonu w stanie |V \rangle równe jest P(V)=|\beta|^2. Stany bazowe |H \rangle i |V \rangle odpowiadają dwóm prostopadłym względem siebie polaryzacjom. Tak więc, polaryzacja światła ma swoje źródło na poziomie pojedynczych fotonów i związana jest z tym, że są one bezmasowymi bozonami o spinie 1. Dla cząstek takich istnieją dwa możliwe rzuty wektora momentu pędu na kierunek jego propagacji. Te dwa stany tak zwanej skrętności (ang. helicity) fotonów, na poziomie klasycznym, odpowiadają dwóm możliwym polaryzacjom kołowym światła (lewoskrętnej i prawoskrętnej). Stany o polaryzacji lewoskrętnej i prawoskrętnej są superpozycjami stanów o polaryzacji liniowej:

| L \rangle  = \frac{1}{\sqrt{2}}\left(|H \rangle  - i |V \rangle   \right)     oraz   | R \rangle  = \frac{1}{\sqrt{2}}\left(|H \rangle  + i |V \rangle   \right) .

Fakt, że foton jest opisywany przez kwantową superpozycję dwóch stanów bazowych, czyli jego stan należy do dwuwymiarowej przestrzeni Hilberta ma ogromne znaczenie z punktu widzenia kwantowej teorii informacji. A mianowicie, foton może być wykorzystany jako nośnik najmniejszej porcji informacji kwantowej, tak zwanego kubitu. Z tego też powodu możemy utożsamić stany polaryzacji fotonu ze stanami bazowymi kubitu: |H \rangle = |0 \rangle oraz |V \rangle = |1 \rangle. Oznaczmy tę bazę jako \mathcal{B}_1 = \{ |0 \rangle, |1 \rangle \}.

Do przeprowadzenia kwantowej dystrybucji klucza, w ramach protokołu BB84, będziemy potrzebowali wprowadzić jeszcze jedną bazę. Mianowicie, \mathcal{B}_2 = \{ |+ \rangle, |- \rangle \}, gdzie stany bazowe wyrażają się jako  następujące superpozycje:

|+ \rangle =  \frac{1}{\sqrt{2}} \left( | 0 \rangle +| 1 \rangle   \right)   oraz    |- \rangle =  \frac{1}{\sqrt{2}} \left( | 0 \rangle -| 1 \rangle   \right).

Jeśli stany bazowe |0 \rangle i |1 \rangle opisują stany polaryzacji pod kątami odpowiednio 0^{\circ} i 90^{\circ} to stany polaryzacji |+ \rangle i |- \rangle opisują polaryzacje liniowe odpowiednio pod kątami 45^{\circ}  i -45^{\circ}. Warto w tym miejscu również zaznaczyć, że stany |0 \rangle i |1 \rangle są stanami własnymi operatora \hat{Z} do wartości własnych +1 i -1 odpowiednio. Natomiast, stany |+ \rangle i |- \rangle są stanami własnymi operatora \hat{X} odpowiednio do wartości własnych  +1 i -1 (operatory \hat{Z} i \hat{X} odpowiadają macierzom Pauliego \sigma_z i \sigma_x). Wszystkie z wprowadzonych tu stanów bazowych można wytworzyć przepuszczając foton przez polaryzator liniowy ustawiony pod jednym z czterech kątów. Ponadto, powyższy dobór baz nie jest przypadkowy i wynika z faktu, że bazy \mathcal{B}_1 i \mathcal{B}_2 są przykładem tak zwanych wzajemnie nieobciążonych baz (ang. mutually unbiased bases), spełniających warunek:

|\langle \psi | \phi \rangle |^2 = \frac{1}{2},

gdzie | \psi \rangle \in  \mathcal{B}_1 a | \phi \rangle \in  \mathcal{B}_2. Oznacza to, że bazy te wykluczają się w sposób maksymalny, uniemożliwiając jednoczesne wykonywanie pomiarów na kubicie w obydwu bazach. W przypadku fotonu ma to następujące konsekwencje: Jeśli przygotujemy foton np. w stanie bazowym |0 \rangle i przepuścimy go przez analizator polaryzacji pod kątami  0^{\circ} i 90^{\circ} (odpowiadających stanom polaryzacji bazy \mathcal{B}_1), to po przejściu przez taki analizator nie nastąpi zmiana stanu fotonu. Jednakże, jeśli na drodze tego samego fotony umieścimy analizator polaryzacji pod kątami  45^{\circ} i -45^{\circ} (odpowiadających stanom polaryzacji bazy \mathcal{B}_2), to po przejściu przez taki analizator foton  z prawdopodobieństwem 1/2 znajdzie się w stanie o polaryzacji |+ \rangle i z takim samym prawdopodobieństwem w stanie o polaryzacji   |- \rangle.  Jeśli foton ten będziemy chcieli zaś ostatecznie przeanalizować wykorzystując analizator ze stanami polaryzacji odpowiadającymi bazie \mathcal{B}_1 to z prawdopodobieństwem 1/2 zaobserwujemy ten foton w stanie  |0 \rangle i z prawdopodobieństwem 1/2 w stanie |1 \rangle (taki sam wynik uzyskalibyśmy jeśli foton byłbym przygotowany w stanie |1 \rangle). Próba przeanalizowania stanu fotonu we wzajemnie obciążonej bazie wprowadza więc maksymalną niepewność co do stanu początkowego.  Własność  ta znajduje bezpośrednie zastosowanie w protokole BB84.

Przyjdźmy więc do jego omówienia. Rozważamy nadawcę (A) i odbiorcę (B) których zwyczajowo określamy mianem Alicji i Boba.  Alicja ma za zadanie przesłać do Boba klucz (ciąg bitów) wykorzystując stany polaryzacji fotonu. Ma ona do dyspozycji 4 stany polaryzacji fotonu odpowiadające stanom bazowym baz \mathcal{B}_1 i \mathcal{B}_2. Klucz stanowi losowy ciąg binarny 01, który można wygenerować np. wykorzystując kwantowy generator liczb losowych (z artykułu arXiv:1405.0453 można dowiedzieć się jak samemu zbudować taki generator w oparciu o smartfon). Alicja wprowadza następujące kodowanie klasycznych bitów klucza za pomocą kwantowych stanów  polaryzacji fotonu. Mianowicie, stany polaryzacji |0 \rangle i |+ \rangle kodują 0, natomiast stany polaryzacji |1 \rangle i |- \rangle kodują 1. W praktyce, generacja klucza odbywa się przez losowe ustalanie jednej z czterech pozycji polaryzatora Alicji (rysunek poniżej).

qbejE
Przykładowa realizacja protokołu BB84. Źródło

Przesyłane od Alicji spolaryzowane fotony Bob będzie rejestrował za pomocą analizatora który może przyjmować takie same orientacje jak polaryzator Alicji. Stany polaryzatora Alicji nie są publiczne, Bob będzie więc dokonywał analizy polaryzacji fotonów w (wybieranych losowo) bazach \mathcal{B}_1 i \mathcal{B}_2.  Na podstawie swoich pomiarów, odzyska on pewien ciąg bitów. Następnym krokiem jest publiczne ogłoszenie przez Boba stanów analizatora (baz) w których dokonywał on kolejnych pomiarów. Warto tu podkreślić, że oczywiście nie upublicznia on samych wyników pomiarów. W ramach danej bazy możliwe są wciąż dwie wartości bitu, wartość klucza pozostaje więc ukryta. Następuje teraz tak zwane uzgodnienie baz (ang. basis reconciliation). Mianowicie, Alicja informuje Boba które użyte przez niego bazy są zgodne ze stanami polaryzacji w których przygotowała ona sekretny klucz. Zdekodowane przez Boba, dla uzgodnionych baz, wartości bitów stanowią sekretny klucz. Ostatnim etapem protokołu jest zweryfikowanie czy nie nastąpiła próba “podsłuchania” przesyłanych kanałem kwantowym informacji.

Omówienie tej kwestii zacznijmy od wyartykułowania jednej z fundamentalnych własności mechaniki kwantowej. Mianowicie, nie jest możliwe idealne skopiowanie nieznanego stanu kwantowego. Nie jest więc możliwe “podłączenie się” do kanału kwantowego i skopiowanie przesyłanej informacji.  Własność ta jest ucieleśniona w twierdzeniu o zakazie klonowania, którego dowód dla przypadku kubitów przedstawiam poniżej.

Twierdzenie o zakazie klonowania (ang. no-cloning theorem) leży u podstaw bezwarunkowego bezpieczeństwa protokołów kryptografii kwantowej. Mówi ono, że nie jest możliwe wykonanie dokładnej kopii (klonu) nieznanego stanu kwantowego. Sformułowanie tego twierdzenia zawdzięczamy Williamowi Woottersowi oraz Wojciechowi Żurkowi [Ref]. Poniżej przedstawię jego dowód, dla przypadku stanu kubitu.

Rozważmy stan kwantowy |\Psi \rangle = \alpha | 0 \rangle + \beta | 1 \rangle. Naszym celem będzie próba skopiowania tego stanu, czyli chcemy aby pewien inny stan, nazwijmy go  |\Phi \rangle, przetransformować (“nadpisać”) w stan |\Psi \rangle, nie zmieniając jednocześnie stanu  |\Psi \rangle. Rozważamy więc wyjściowo stan będący następujacym iloczynem tensorowym:  |\Psi \rangle \otimes |\Phi \rangle. Ponadto, wprowadźmy (unitarny) operator kopiujący, nazwijmy go  \hat{K}, którego działanie  powinno być następujące: \hat{K}(|\Psi \rangle \otimes |\Phi \rangle)=|\Psi \rangle \otimes |\Psi \rangle, dla dowolnego stanu |\Psi \rangle. Żeby sprawdzić czy jest to możliwe, zadziałajmy najpierw operatorem \hat{K} na stany bazowe  | 0 \rangle i | 1 \rangle. Działanie operatora \hat{K} powinno dawać  \hat{K}(|0 \rangle \otimes |\Phi \rangle)=|0\rangle \otimes |0 \rangle oraz \hat{K}(|1 \rangle \otimes |\Phi \rangle)=|1\rangle \otimes |1 \rangle .  Zakładając, że powyższe jest spełnione, spróbujmy przeprowadzić kopiowanie stanu |\Psi \rangle = \alpha | 0 \rangle + \beta | 1 \rangle. Skorzystamy w tym miejscu z własności liniowości operatorów rozważanych w mechanice kwantowej (czyli np. \hat{O}(|a\rangle+|b\rangle)=\hat{O}(|a\rangle)+\hat{O}(|b\rangle) , dla dowolnych stanów |a\rangle i |b\rangle). W konsekwencji, otrzymujemy:

\hat{K}(|\Psi \rangle \otimes |\Phi \rangle) = \hat{K}((\alpha | 0 \rangle + \beta | 1 \rangle) \otimes |\Phi \rangle) = \alpha \hat{K}(|0 \rangle \otimes |\Phi \rangle)+\beta \hat{K}(|1 \rangle \otimes |\Phi \rangle) = \alpha |0\rangle \otimes |0 \rangle + \beta |1\rangle \otimes |1 \rangle.

Stan końcowy  jakiego jednak oczekiwalibyśmy w wyniku kopiowania (klonowania) to:

|\Psi \rangle \otimes |\Psi \rangle = (\alpha |0\rangle + \beta |1\rangle)\otimes (\alpha |0\rangle + \beta |1\rangle) = \alpha^2 |0\rangle  \otimes|0\rangle + \alpha \beta |0 \rangle  \otimes|1\rangle + \alpha\beta|1\rangle  \otimes|0\rangle + \beta^2 |1\rangle  \otimes|1\rangle,

który jest odzyskiwany tylko w szczególnych przypadkach stanów bazowych,  tzn. kiedy \alpha=1 i \beta=0 lub \alpha=0\beta=1. Powyższa analiza dowodzi tego, że nie jest możliwe skopiowanie nieznanego stanu kubitu. Przeprowadzenie dowodu dla przypadku dowolnego stanu |\Psi \rangle pozostawiam Czytelnikowi jako ćwiczenie.

Pomimo zakazu klonowania stanów kwantowych, istnieją pewne strategie ataków na protokoły kryptografii kwantowej. Np. podsłuchujący (nazwijmy ją Ewa) może ustawić na drodze optycznej fotonu analizator i próbować odczytać pewne bity klucza. Jak to już jednak dyskutowaliśmy powyżej, obecność takiego analizatora w sposób nieodłączny wiąże się z wpłynięciem na stany fotonu. W celu wyeliminowania możliwości podsłuchu, Alicja i Bob porównują publicznie część klucza. Jeśli w wybranym ciągu bitów nie zauważą różnić, mają pewność, że nie nastąpiła próba ataku. Oczywiście, w praktyce mogą występować pewne różnice w ciągu bitów wynikające z występowaniem szumu, generującego pewien poziom błędów. Istnieje jednak metoda dokładnego określenia jaki poziom niezgodności porównywanego ciągu bitów jest dopuszczalny dla zachowania poufności wymiany klucza. Metoda ta opiera się na wykorzystaniu teorii informacji i pozwolę sobie zarysować jej uproszczoną postać. Zacznijmy od odpowiedzi na pytanie jak dużo błędów do odczytywanego przez Boba ciągu bitów będzie wprowadzał ustawiony przez Ewę, na drodze fotonu, analizator. Analizator ten może być dostosowany do bazy \mathcal{B}_1 lub \mathcal{B}_2.  Prosta probabilistyka mówi nam, że prawdopodobieństwo nie zaburzenia przez Ewę pojedynczego bitu przesyłanego klucza wynosi:

P= \frac{1}{2}\cdot \frac{1}{2}+\frac{1}{2}\cdot 1 = \frac{3}{4}.

Czyli, starająca się wykraść sekretny klucz Ewa, w 25 % przypadków wprowadzi błąd do przesyłanego ciągu bitów. Ponadto, ponieważ z prawdopodobieństwem 1/2 analizuje ona foton we właściwej bazie, z takim też prawdopodobieństwem odczyta ona poprawnie wartość przesyłanego bitu. Ponieważ, wyjściowo, nie zna ona ustawień polaryzatora Alicji, nie jest ona jednak w stanie stwierdzić który bit odczytała prawidłowo a który nie. Odkodowania połowy przesyłanych bitów klucza może dokonać jedynie poznawszy (post factum) ustawienia polaryzatora Alicji. Może to więc zrobić dla bitów dla których następuje sprawdzenie klucza przez Alicję i Boba.

Do skwantyfikowania ilości błędów wprowadzanych podczas kwantowej transmisji informacji używa się wielkości zwanej QBER (Quantum Bit Error Rate) – e która zdefiniowana jest jako stosunek liczby kubitów z błędem (N_e) względem całkowitej liczby przesyłanych kubitów N:

e  := \frac{N_e}{N}.

Jeśli przez f \in [0,1] oznaczymy część kubitów analizowanych przez Ewę, to wprowadzany przez Nią QBER wynosi e = \frac{1}{4} f, gdzie czynnik 1/4 wynika z przeprowadzonych powyżej rozważań probabilistycznych. Przywołajmy teraz pojęcie informacji wzajemnej (ang. mutual information), która pozwoli nam skwantyfikować jaka część informacji jest tracona w kanale kwantowym w wyniku ataków Ewy. Jak można pokazać, wzajemna informacja pomiędzy Alicją a Bobem wyraża się jako

I(A : B) = 1 - h(e),  gdzie h(e) = -e \log_2 e - (1-e) \log_2 (1-e)

to tak zwana entropia informacyjna Shannona. Wzajemna informacja pomiędzy Alicją a Ewą wynosi zaś

I(A : E) = \frac{1}{2}f = 2e,

co wynika z faktu, iż Ewa (znając położenie polaryzatorów Ewy) jest w stanie teoretycznie odzyskać wartości połowy “podsłuchiwanych” przez Nią bitów. Jeśli informacja w układzie Alicja-Ewa I(A : E) zaczyna być większa niż pomiędzy Alicją i Bobem I(A : B), przesyłanie klucza przestaje być bezpieczne. Na tej podstawie, rozpatrując warunek graniczny I(A : E)=I(A : B), otrzymujemy, że (przy powyższych założeniach) bezpieczeństwo kwantowej dystrybucji klucza zapewnione jest jeśli poziom błędów e jest mniejszy niż około 17 \%Jeśli, porównując wybrane bity klucza, Alicja i Bob zanotują różnicę na wyższym poziomie, nie można zaakceptować przesyłanego klucza  i należy powtórzyć całą procedurę.   

Przeprowadzona powyżej analiza ma znaczenie praktyczne i znajduje zastosowanie w istniejących systemach do kwantowej dystrybucji klucza. Na rynku istnienie obecnie kilka zestawów które pozwalają przeprowadzić KDK wykorzystując protokoły oparte na superpozycji kwantowej. Na rysunku poniżej przedstawiono przykładowy zestaw wykorzystujący zmodyfikowaną wersję protokołu BB84, tzw. protokół T12

ToshibaQKD
Przykładowy dostępny komercyjnie zestaw do kwantowej dystrybucji klucza. Źródło

Do przesyłania fotonów, dostępne komercyjnie systemy kryptografii kwantowej stosują światłowody. Niepożądaną cechą takiego rozwiązania jest jednak wykładnicze tłumienie natężenia światła w funkcji przebytego przez światło dystansu. Z uwagi na twierdzenie o zakazie klonowania oraz na fakt posługiwania się w kwantowej dystrybucji klucza pojedynczymi fotonami, nie jest możliwe stosowanie klasycznych wzmacniaczy sygnału.  Dlatego też, kwantowa dystrybucja klucza za pośrednictwem światłowodów jest dzisiaj ograniczona do odległości poniżej około 400 km.

BitRate
Wykładniczy zanik przepustowości kwantowej dystrybucji klucza w funkcji odległości. Źródło

Wraz z długością linii transmisyjnej spada jej przepustowość.  Na bardzo krótkich dystansach osiągane są obecnie wartości około 10 Mb/s (arXiv:1807.04484). Na odległościach rzędu 50 km wartość ta spada już do około 1 Mb/s. Natomiast, nieubłagana natura zaniku eksponencjalnego sprawia, że na dystansach około 400 km KDK można przeprowadzać w tempie jedynie około 1 bitu na sekundę (co jest wielkością niepraktyczną).

Możliwym rozwiązaniem dla powyższych trudności jest stosowanie powielaczy kwantowych (ang. quantum repeater). Są to jednakże bardzo złożone systemy, będące wciąż w fazie badań.  Dużo bardziej obiecującym rozwiązaniem jest wykorzystanie faktu jedynie odwrotnego z kwadratem odległości zaniku natężenia światła w próżni, oraz dużo słabszego niż w ciele stałym tłumienia fotonów w gazach. Rozwiązanie to wiąże się z wykorzystaniem przestrzeni kosmicznej do przeprowadzenia kwantowej dystrybucji klucza. Możliwość taka została pomyślnie potwierdzona eksperymentalnie na skalach międzykontynentalnych w 2017 roku z wykorzystaniem protokołu BB84. Zagadnienie to opisuję bardziej szczegółowo we wpisie Kwantowa łączność satelitarna.

© Jakub Mielczarek

Zwarte przestrzenie fazowe

Jednym z zagadnień, nad którym obecnie pracuję, jest konstrukcja teorii pól z tak zwanymi zwartymi przestrzeniami fazowymi. Teorie takie są uogólnieniem powszechnie rozważanych w fizyce teoretycznej teorii z afinicznymi (płaskimi) przestrzeniami fazowymi. Kierunek badawczy związany z uzwarcaniem przestrzeni fazowych pól fizycznych zainicjowaliśmy, wspólnie z dr Tomaszem Trześniewskim, w 2016-tym roku w pracy “The Nonlinear Field Space Theory” Phys. Lett. B 759 (2016) 424 (open access). Badania te kontynuujemy obecnie w ramach grantu Sonata Bis 7 z NCN pt. “Teorie pola ze zwartymi przestrzeniami fazowymi − od grawitacji do układów złożonych”. Jednym z ambitnych celów tego projektu jest zbudowanie (kwantowej) teorii grawitacji, cechującej się zwartą przestrzenią fazową. O wynikach prowadzonych przez nas badań napiszę więcej w jednym z kolejnych wpisów. Tutaj zaś chciałbym przygotować niezbędną podbudowę teoretyczną do dyskusji  naszych dotychczasowych rezultatów. Przedstawię mianowicie ideę zwartej przestrzeni fazowej na przykładzie układu fizycznego z jednym stopniem swobody, co można uważać za teorię pola skalarnego w punkcie (w przestrzeni zerowymiarowej).

Rozważmy więc pojedynczy stopień swobody, opisywany zmienną q. Wartości q należą do, tak zwanej, przestrzeni konfiguracyjnej \mathcal{C}, którą wyjściowo przyjmijmy za zbiór liczb rzeczywistych, \mathcal{C} = \mathbb{R}. Zmienna q może więc przyjmować dowolną wartość z zakresu liczb rzeczywistych i opisywać stopień swobody wybranego układu fizycznego. Jeśli, na przykład, interpretujemy q jako wartość pola skalarnego w punkcie, to wybór \mathcal{C} = \mathbb{R} oznacza, że pole to może zmieniać swoją wartość w zakresie od - \infty do +\infty. Jeśli zaś q opisuje położenie cząstki, to wybór \mathcal{C} = \mathbb{R} mówi nam, że mamy do czynienia z ruchem w jednym wymiarze przestrzennym, po całej osi liczb rzeczywistych.

Do pełnego scharakteryzowani stanu cząstki nie wystarczy podanie jej położenia. Tak samo, do określenia stanu pola nie wystarczy znajomość jego wartości. W obydwu przypadkach, konieczne jest określenie również tego jak q zmienia się w czasie. Informację tę zawiera, sprzężony z q, pęd kanoniczny p. Pary (q,p) wyznaczają zaś punkty należące do, tak zwanej, przestrzeni fazowej \Gamma. Z geometrycznego punktu widzenia, przestrzeń fazowa jest zazwyczaj tzw. wiązką kostyczną do przestrzeni konfiguracyjnej:

\Gamma = T^*(\mathcal{C}) := \left\{ (q,p) : q \in \mathcal{C}, p \in T_q^*(\mathcal{C}) \right\} ,

gdzie T_q^*(\mathcal{C})  to przestrzeń kostyczna do przestrzeni \mathcal{C} w punkcie q. Dla rozważanego przypadku \mathcal{C} = \mathbb{R}, otrzymujemy \Gamma = T^*(\mathcal{C}) = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2, czyli płaszczyznę rzeczywistą. Dowolny punkt na tej płaszczyźnie reprezentuje stan układu klasycznego. Ewolucji układu w czasie odpowiadają zaś trajektorie (rysunek poniżej).

PhaseSpace
Przestrzeń fazowa \Gamma = T^*(\mathcal{C}) = \mathbb{R}^2, gdzie \mathcal{C}= \mathbb{R}T_{q_0}^*(\mathcal{C}) to przestrzeń kostyczna do przestrzeni \mathcal{C} w punkcie q_0. Wiązka kostyczna jest sumą rozłączną przestrzeni kostycznych dla wszystkich q_0 \in \mathcal{C}. Czarna trajektoria reprezentuje ewolucję układu w czasie. Niebieski punkt wskazuje na jednen ze stanów układu.

Istnieją jednak przypadki w których przestrzeni fazowej nie możemy wyrazić jako wiązki kostycznej  \Gamma = T^*(\mathcal{C}). Przykładem tego jest chociażby (zwarta) przestrzeń fazowa o geometrii sfery, którą przedyskutujemy dokładniej w dalszej części.  Przypadek ten wpisuje się natomiast w ogólną definicję przestrzeni fazowych, jako tak zwanych rozmaitości symplektycznych, czyli rozmaitości różniczkowych posiadających zamknięte formy różniczkowe

\omega = \frac{1}{2} \omega_{ij} dx^i \wedge dx^j,

gdzie, dla rozważanej wcześniej przestrzeni fazowej  \Gamma = \mathbb{R}^2, i =1,2 oraz x_1=q i x_2=p a forma różniczkowa przyjmuje postać \omega = dp \wedge dq. Symbol \wedge oznacza tak zwany iloczyn zewnętrzny (ang. exterior product) form różniczkowych, w rozważanym przypadku 1-formy dp oraz 1-formy dq. Zamkniętość  2-formy \omega oznacza zaś, że d\omega = d(dp \wedge dq) = 0. Niniejsza własność gwarantuje spełnienie tzw. tożsamości Jacobiego, która zaś implikuje łączność algebry Poissona. Algebra ta konstruowana jest w oparciu o nawias Poissona \{f,g\} :=\mathcal{P}^{ij}(\frac{\partial f}{\partial x^i})(\frac{\partial g}{\partial x^j}), gdzie \mathcal{P}^{ij} :=(\omega^{-1})^{ij} to tak zwany tensor Poissona, otrzymywany przez  odwrócenie formy symplektycznej \omega (co nie zawsze jest możliwe). Dla rozważanego przypadku \Gamma = \mathbb{R}^2, nawias ten wyraża się jako \{f,g\} = \frac{\partial f}{\partial q} \frac{\partial g}{\partial p}- \frac{\partial f}{\partial p} \frac{\partial g}{\partial q} , tak że dla pary kanonicznie sprzężonych zmiennych q i p otrzymujemy \{q, p\}=1. Wykorzystując nawias Poissona, możemy wprowadzić równanie Hamiltona \frac{df}{dt} = \{f, H\}+\frac{\partial f}{\partial t}, gdzie H jest tak zwaną funkcją Hamiltona (hamiltonianem), zaś f jest dowolną funkcją na przestrzeni fazowej. Równanie to opisuje ewolucję w czasie t układu fizycznego.

Płaskie (afiniczne) przestrzenie fazowe, tak  jak rozważany tu przypadek \Gamma = \mathbb{R}^2 mają szerokie zastosowanie do opisu świata fizycznego. Jednakże, w wielu przypadkach, nieograniczoność tych przestrzeni prowadzi do trudności. Na przykład,  w przypadku teorii pól, afiniczność przestrzeni fazowej przekłada się na nieograniczoność energii (hamiltonianu), będącej funkcją zmiennych fazowych. To zaś skutkuje możliwością pojawienia się niefizycznych nieskończoności. Lista potencjalnych problemów jest dłuższa. Możliwym sposobem na ich rozwiązanie jest uzwarcenie przestrzeni fazowej. Poniżej, przedstawię jak taka procedura  wygląda w przypadku \Gamma = \mathbb{R}^2 (płaszczyzna) uzwarconej do \Gamma = S^2 (sfera).

Rozważmy zatem sferyczną przestrzeń fazową, tak by w granicy gdy jej promień dąży do nieskończoności, odzyskiwać przypadek przestrzeni fazowej  \Gamma = \mathbb{R}^2. Innymi słowy, płaska przestrzeń fazowa będzie lokalnym przybliżeniem dla przestrzeni sferycznej,  w podobny sposób jak geometria euklidesowa jest lokalnym przybliżeniem dla (nieeuklidesowej) geometrii sferycznej.  Zamiast jednak rozważać kąty i długości, w przypadku przestrzeni fazowej obiektem naszego zainteresowania będzie forma symplektyczna \omega.

Naturalnym wyborem formy symplektycznej dla sfery jest 2-forma powierzchni \omega = S \sin \theta d \phi \wedge d \theta. Kąty \phi \in (-\pi, \pi] oraz \theta \in [0,\pi] to standardowe kąty w sferycznym układzie współrzędnych. Stała S została zaś wprowadzona ze względów wymiarowych, tak by forma symplektyczna  \omega miała wymiar powierzchni na płaszczyźnie fazowej 2D, czyli położenie razy pęd (= moment pędu). W celu wyrażenia tej formy poprzez zmienne q oraz p, wykorzystywane w przypadku \Gamma = \mathbb{R}^2, wykonajmy następującą zmianę zmiennych:

\phi = \frac{q}{R_1}  oraz  \theta = \frac{\pi}{2}-\frac{p}{R_2},

gdzie R_1 i R_2 to parametry wprowadzone ze względów wymiarowych. Stosując to do formy \omega = S \sin \theta d \phi \wedge d \theta, otrzymujemy:

\omega= \frac{S}{R_1R_2} \cos\Big(\frac{p}{R_2}\Big)dp\wedge dq.

Chcąc by w granicy R_1\rightarrow \infty oraz R_2 \rightarrow \infty, powyższa forma redukowała się do przypadku płaskiego, czyli \omega=dp\wedge dq, musimy przyjąć by S = R_1 R_2.

Sphere
Afiniczna (płaska) przestrzeń fazowa \Gamma = \mathbb{R}^2 może być rozpatrywana jako lokalne przybliżenie zwartej przestrzeni fazowej, na przykład o geometrii sfery \Gamma = S^2.

Spełnienie warunku poprawnej granicy afinicznej implikuje więc, że 2-forma \omega dla (zwartej) sferycznej przestrzeni fazowej ma postać:

\omega=\cos\Big(\frac{p}{R_2}\Big)dp\wedge dq.

Podobnie, jak w rozważanym wcześniej przypadku \Gamma = \mathbb{R}^2, w oparciu o formę symplektyczną możemy wyznaczyć postać nawiasu Poissona dla sferycznej przestrzeni fazowej:

\{f,g\} =  \frac{1}{\cos\Big(\frac{p}{R_2}\Big)}\left( \frac{\partial f}{\partial q} \frac{\partial g}{\partial p}- \frac{\partial f}{\partial p} \frac{\partial g}{\partial q}\right).

Różnica z przypadkiem \Gamma = \mathbb{R}^2 polega na obecności czynnika 1/\cos\Big(\frac{p}{R_2}\Big). W konsekwencji, nawias Poissona pomiędzy zmiennymi kanonicznymi przyjmuje postać \{q,p\} =  1/\cos\Big(\frac{p}{R_2}\Big).  Warto tu podkreślić, że zmienne q oraz p są dobrze zdefiniowane na sferze jedynie lokalnie.  Ich wartości nie zmieniają się na sferze w sposób ciągły. W szczególności, q \in (-\pi R_1, \pi R_1], tak że w puncie q= \pi R_1 następuje nieciągłość.  O ile, nie ma to znaczenia w przypadku kiedy rozważamy małe wartości q (w otoczeniu granicy afinicznej), tak w przypadku analizy globalnych własności sferycznej przestrzeni fazowej zasadne jest wprowadzenie zmiennych które zdefiniowane są w sposób globalny.  Naturalnym wyborem takich zmiennych jest parametryzacja sfery w kartezjańskim układzie współrzędnych. Dowolny punkt na sferze może być więc wskazywany przez wektor \vec{S}=(S_x,S_y,S_z) o składowych:

S_x:= S \sin\theta \cos\phi = S \cos \left( \frac{p}{R_2} \right) \cos \left( \frac{q}{R_1} \right),

S_y:= S \sin\theta \sin\phi = S \cos \left( \frac{p}{R_2} \right) \sin \left( \frac{q}{R_1} \right),

S_z:= S \cos\theta = S \sin \left( \frac{p}{R_2} \right).

Przy czym, spełnione jest równanie sfery  \vec{S}\cdot\vec{S}= S_x^2+S_y^2+S_x^2=S^2. Wykorzystując nawias Poissona dla sferycznej przestrzeni fazowej, możemy teraz pokazać że składowe wektora \vec{S} spełniają następującą relacje:

\{S_x,S_y\} = S_z, \ \ \ \{S_z,S_x\} = S_y, \ \ \ \{S_y,S_z\} = S_x.

Jest to tak zwana algebra su(2).  Oznacza to, że składowe wektora \vec{S} są generatorami obrotów, co jest konsekwencją  symetrii sferycznej przestrzeni fazowej. Zgodnie więc z definicją,  wektor \vec{S}, którego składowe spełniają powyższą algebrę, nazywamy momentem pędu (lub spinem). Fakt, iż sferyczna przestrzeń fazowa jest przestrzenią fazową momentu pędu ma daleko idące konsekwencje. W szczególności, obserwacja, że sferyczna przestrzeń fazowa (momentu pędu lub spinu) może być lokalnie opisywana przez płaską przestrzeń fazową z jednym stopniem swobody stała się podstawą do wprowadzenia, przeze mnie w 2017-tym roku, tak zwanej Korespondencji Spin-Pole  (Spin-Field Correspondence).  Korespondencja ta wiąże, w granicy dużego spinu (S\rightarrow \infty), znane afiniczne teorie pola z układami spinowymi. W szczególności, jak pokazaliśmy z moimi współpracownikami z Uniwersytetu Fudan w Szanghaju w pracy  “Klein-Gordon field from the XXZ Heisenberg model” (przyjęte do druku w International Journal of Modern Physics D), pole skalarne Kleina-Gordona można otrzymać z łańcucha spinowego XX Heisenberga (model XXZ Heisenberga w granicy \Delta \rightarrow 0 parametru anizotropii).

Posłużyłem się powyżej określeniem spin, które zarezerwowane jest do określenia wewnętrznego momentu pędu cząstek, bezpośrednio związanego z jej kwantową naturą  i wyrażającego się w ułamkach (n/2, gdzie n = 0,1,2,3,\dots) zredukowanej stałej Plancka \hslash.  Jednakże, jak dotąd, nasze rozważania były skupione na analizie klasycznych przestrzeni fazowych, dla których wartość momentu pędu S pozostawała nieokreślona. Dla kompletności naszych rozważań, zakończymy więc naszą dyskusję zarysem analizy przypadku kwantowego. Mianowicie, w ujęciu kwantowym, stan układu nie jest opisywany przez punkt w przestrzeni fazowej lecz przez wektor w przestrzeni Hilberta (warto tu zaznaczyć, że w podejściu zwanym mechaniką kwantową na płaszczyźnie fazowej, stan kwantowy układu można związać z tak zwaną funkcją gęstości kwaziprawdopodbieństwa (funkcja Wignera) określoną na przestrzeni fazowej). Wymiar przestrzeni Hilberta, czyli ilość liniowo niezależnych wektorów bazowych, wiąże się natomiast z powierzchnią przestrzeni fazowej. Mianowicie, zasada nieoznaczoności Heisenberga mówi nam, że iloczyn nieoznaczoności pomiarów q i p ograniczony jest od dołu w następujący sposób (dla przypadku płaskiej przestrzeni fazowej):

\Delta q \Delta p \geq \frac{\hslash}{2}.

Nie możemy dokładniej wyznaczyć więc klasycznego stanu stopnia swobody na płaszczyźnie fazowej niż jako powierzchni \sim \hslash. Do opisu układu, którego przestrzeń fazowa ma powierzchnię A potrzebujemy więc około A/\hslash niezależnych wektorów w przestrzeni Hilberta. W przypadku płaskiej przestrzeni fazowej, z uwagi na nieskończoność powierzchni, przestrzeń Hilberta musi więc posiadać nieskończony wymiar.  Jednakże, dla przypadku sfery \Gamma=S^2, powierzchnia przestrzeni fazowej jest równa:

A =  \int_{\Omega} \omega = 4 \pi S < \infty,

gdzie wykonano całkowani po pełnym kącie bryłowym \Omega. Wymiar przestrzeni Hilberta jest więc skończony i proporcjonalny do \sim S/\hslash. Ponieważ wymiar przestrzeni Hilberta jest liczbą naturalną, dozwolone są jedynie pewne wartości S, będące wielokrotnością stałej Plancka \hslash. Sama zwartość przestrzeni fazowej implikuje więc kwantowanie momentu pędu (spinu). Dokładny rachunek, wykorzystujący kwantowanie algebry su(2) lub też stosując tak zwane kwantowanie geometryczne sfery, mówi nam, że wymiar przestrzeni Hilberta dla spinu wyraża się jako \text{dim} H_s = 2s+1, gdzie s=0,\frac{1}{2}, 1, \frac{3}{2}, \dots. Natomiast, powierzchnia przestrzeni fazowej wyraża się jako  4 \pi S =4 \pi \hslash s .  Jeśli, na przykład, rozważymy spin elektronu, dla którego s=1/2, odpowiadająca mu powierzchnia przestrzeni fazowej będzie równa 2\pi \hslash.  

© Jakub Mielczarek

Rock et Science

Fundamentem każdej odpowiednio zaawansowanej technologii są nauki podstawowe. Niestety jednak, umiejętność posługiwania się nowymi zdobyczami techniki powszechnie nie idzie w parze ze zrozumieniem zasad ich funkcjonowania. I nie chodzi mi tu o szczegóły techniczne danego urządzenia, znajomość tych jest przeciętnemu użytkownikowi zbyteczna, lecz o ideę, na której dane rozwiązanie się opiera. A to uważam jest istotne, chociażby po to, by we współczesnym technologicznym świecie nie czuć się zdezorientowanym i móc w pełni czerpać z jego dobrodziejstw. Dla przykładu, tak prosta rzecz jak żarówka. Przez lata, intuicyjne rozumienie jej działania nie stanowiło dla nikogo większego problemu. Jednakże dzisiaj, “żarówka”  to już najczęściej nie lampa żarowa lecz lampa LED.  Bez wątpienia, odsetek osób rozumiejących zasadę emisji światła z lampy LED (rekombinacja promienista par elektron-dziura w półprzewodnikowym złączu p-n) jest dużo niższy niż to miało miejsce w przypadku standardowych lamp żarowych (promieniowanie termiczne rozgrzanej przez przepływ prądu skrętki).

To właśnie chęć przyczynienia się do zmiany tego stanu rzeczy była jednym z zamysłów które skłoniły mnie do podjęcia się prowadzenia tego bloga. Wyszedłem z założenia, iż sytuację tę można niejako obrócić na korzyść nauk podstawowych. Bo przecież, chęć (czy też potrzeba) zrozumienia otaczających nas technologii stanowi doskonały punkt wyjścia do głębszej refleksji nad zasadami stojącymi za ich funkcjonowaniem. W ten sposób, możemy dzisiaj stosunkowo łatwo dotrzeć do fundamentalnych koncepcji naukowych oraz praw natury, których przyswojenie, bez technologicznego kontekstu byłoby znacznie trudniejsze i dla wielu z nas mniej ciekawe.  W części z moich kolejnych wpisów będę starał się podążać tą ścieżką, biorąc “na warsztat”  nowoczesne technologie i odsłaniając ich naukowy rdzeń.

Jednymi z tych technologii które powszechnie uważane są szczególnie trudne, są technologie rakietowe. Inżynierię rakietową (ang. rocket science) przyjęło się wręcz traktować jako synonim czegoś niezwykle skomplikowanego. Wbrew tej opinii, podstawy fizyczne działania rakiet są stosunkowo proste.

Ponieważ żyjemy w czasach niezwykłego ożywienia w obszarze eksploracji kosmosu (tzw. NewSpace) a media zalewają nas doniesieniami o startach nowych rakiet, eksploracji Marsa i nadchodzącej erze turystyki kosmicznej, podstawy rocket science najzwyczajniej warto znać. Wychodząc naprzeciw tej potrzebie, poniżej, postaram się podsumować najistotniejsze aspekty fizyczne działania rakiet. Swoją uwagę skoncentruję tutaj na najpopularniejszym typie rakiet kosmicznych, wykorzystującym chemiczne silniki rakietowe.

W największym uproszczeniu, rakieta porusza dzięki wyrzucanym z silnika rakietowego gazom spalinowym. Działa tu efekt odrzutu, będący konsekwencją zasady zachowania pędu. Rakieta zyskuje pęd równy co do wartości i kierunku, lecz o przeciwnym zwrocie do pędu wyrzucanych spalin. Im większa prędkość wyrzucanego gazu, tym też większy jest jego pęd. Do osiągnięcia odpowiedniej prędkości rakiety, ważne jest by gazy spalinowe wyrzucane były z rakiety odpowiednio szybko, a to (w chemicznym silniku rakietowym) osiągane jest przez kontrolowany proces spalania mieszanki paliwowej w komorze spalania. Najpopularniej wykorzystywanym paliwem w przypadku rakiet na paliwo ciekłe są obecnie nafta, ciekły wodór oraz ciekły metan (fazy ciekłe mają dużo większą gęstość energii). Jako utleniacza (który jest niezbędny w celu osiągnięcia odpowiedniego tempa spalania) wykorzystywany jest natomiast skroplony tlen. Zachodząca w komorze spalania reakcja generuje ogromną temperaturę i ciśnienie. Przewężenie (ang. throat), pomiędzy komorą spalania a dyszą wylotową (ang. nozzle) to natomiast (zgodnie z równaniem Bernoulliego) miejsce w którym spada ciśnienie gazów, jego prędkość zaś szybko wzrasta (w kierunku dyszy), osiągając wartości supersoniczne. Wynika to z różnicy ciśnień pomiędzy komorą spalania a dyszą. Opisaną tu sytuację obrazuje poniższy schemat:

Rakieta

Przejdźmy teraz do podstawowych rozważań ilościowych. Będziemy musieli w tym celu posłużyć się elementami rachunku różniczkowego i całkowego. Czytelnika niezaznajomionego z tym działem matematyki zachęcam do szybkiego przyswojenia niezbędnej wiedzy w oparciu o Kurs Analizy Matematycznej na Khan Academy.

Oznaczmy przez M masę rakiety a przez m masę wyrzucanych produktów spalania. Tak, że rozważając infinitezymalne zmiany mas możemy zapisać dM = - dm. Przez v oznaczmy natomiast prędkość rakiety (dla uproszczenia rozważamy ruch w jednym kierunku). Dla uproszczenia przyjmijmy ponadto, że czynnik roboczy wyrzucany jest z silnika rakiety ze stałą, względem rakiety, prędkością u. Przy tym założeniu, postarajmy się teraz wyznaczyć zmianę prędkości rakiety w rezultacie wyrzucenia produktów spalania o masie dm.

W tym celu, rozważmy sytuację w której w chwili t_1 znajdujemy się w układzie spoczynkowym rakiety, w którym jej prędkość (v) jaki i pęd (p = Mv) są równe zeru. W infinitezymalnym przedziale czasu dt (czyli do chwili t_2=t_1+dt) nastąpił wyrzut masy dm, co spowodowało obniżenie masy rakiety do wartości M-dm oraz wzrost jest prędkości od zera do dv. Wyrzucane produkty spalania zyskują natomiast pęd u dm. W konsekwencji, zmianę pędu dp całego układu (rakieta oraz wyrzucane produkty spalania) możemy zapisać jako przyrost pędu rakiety pomniejszony o pęd wyrzucanych gazów:

dp=(M-dm)dv-udm.

Pomijając wyraz wyższego rzędu dm dv  (dm jest infinitezymalnie małe, można je więc zaniedbać względem skończonego M), otrzymujemy poszukiwane wyrażenie:

dp=Mdv-udm.   (1)

Druga zasada dynamiki Newtona mówi nam, że zmiana pędu w czasie równa jest sile:

\frac{dp}{dt}=F.   (2)

W przypadku braku działania na układ sił zewnętrznych (F=0) nie następuje zmiana jego pędu (dp=0). W sytuacji takiej spełniona jest zasada zachowania pędu którą, w rozważanym przypadku, możemy wyrazić poprzez równanie:

Mdv=udm,  (3)

będące bezpośrednią konsekwencję równania (1). Przypadek z niezerową siłą (na przykład działającą na rakietę i gazy wylotowe siłą grawitacji lub/i siłą oporu aerodynamicznego) pozostawiamy Czytelnikowi do samodzielnej analizy. My zaś przejdźmy do prześledzenia konsekwencji równania (3):

Równanie Ciołkowskiego. Wykorzystując wyprowadzoną z zasady zachowania pędu zależność (3), czyli M  dv = u dm, oraz relację dm = -dM otrzymujemy:

dv = - u \frac{dM}{M}.

Całkując to wyrażenie w przedziale od masy początkowej M_1 do masy końcowej rakiety M_2 uzyskujemy wyrażenie na całkowitą zmianę prędkości rakiety:

\Delta v = v_2-v_1 = \int_{v_1}^{v_2}dv= - u \int_{M_1}^{M_2} \frac{dM}{M} =  u  \ln \left(\frac{M_1}{M_2}\right).   (4)

Jest to sławny wzór Ciołkowskiego, opisujący zmianę prędkości rakiety \Delta v spowodowaną wyrzutem masy ze stałą prędkością u, od wartości M_1 do M_2. Jako przykład zastosowania, wykorzystajmy równanie (4) do oszacowania ilości paliwa jakie należy spalić w rakiecie żeby osiągnąć pierwszą prędkość kosmiczną, czyli prędkość jaką musi zyskać rakieta aby mogła orbitować na niskiej orbicie okołoziemskiej. Prędkość ta wynosi v_I = \sqrt{\frac{G M_z}{R_z}} \approx  7,9 \frac{km}{s} \approx 7900 \frac{m}{s}, gdzie G to stała grawitacji, M_z to masa Ziemi a R_z to promień Ziemi. Typowe prędkości wyrzutu produktów spalania w rakietach na paliwo ciekłe to u \sim 4000 \frac{m}{s}. Na podstawie równania (4), zmiana prędkości rakiety od v=0 do v=v_I wiąże się (w rozważanym przypadku rakiety jednoczłonowej) z następującą zmianą masy rakiety:

\frac{M_1}{M_2} = e^{v_I/u} \approx 7.2.

Oznacza to, że aby rakieta mogła wejść na niską orbitę okołoziemską, paliwo oraz utleniacz muszą stanowić przynajmniej

\frac{M_1-M_2}{M_1} \times 100 \% \approx 86 \%

jej początkowej masy!

Przejdźmy teraz do zdefiniowania dwóch podstawowych parametrów silnika rakietowego, mianowicie siły ciągu praz impulsu właściwego.  W tym celu, podstawmy do równania Newtona (2) wyrażenie na zmianę pędu (1). Otrzymamy wtedy:

M\frac{dv}{dt}-u\frac{dm}{dt}=F,

lub równoważnie

M\frac{dv}{dt}=F+u\frac{dm}{dt},   (5)

czyli tak zwane równanie Mieszczerskiego. Lewa strona równania (5) to szkolne wyrażenie: masa  M pomnożona przez przyśpieszenie (ponieważ a=\frac{dv}{dt}), pojawiające się w równaniu Newtona dla punktu materialnego o stałej masie. W rozważanym przypadku, z uwagi na zmianę masy rakiety w czasie, otrzymujemy efektywnie dodatkowy przyczynek do siły działającej na rakietę równy u\frac{dm}{dt}. Jest to tak zwana  siła ciągu rakiety:

F_c = u \frac{dm}{dt}.   (6)

W rzeczywistych, chemicznych silnikach rakietowych istnieje jeszcze jeden  przyczynek do siły ciągu. Wynika on z ciśnienia wywieranego przez wyrzucany z silnika gaz na wewnętrzną stronę dyszy wylotowej (patrz rysunek powyżej). Oznaczmy powierzchnię maksymalnego przekroju poprzecznego dyszy silnika przez A. Od strony wewnętrznej, na dyszę działa siła  F_1=Ap_w, gdzie p_w jest ciśnieniem wywieranym na dyszę przez gazy wylotowe. Po drugiej stronie dyszy panuje ciśnienie zewnętrzne p_0, które wywiera na dyszę siłę  F_2=Ap_0. Z uwagi na różnicę ciśnień  p_wp_0, na dyszę (i w konsekwencji na rakietę) działa wypadkowa siła

F_p =F_1-F_2=A(p_w-p_0).   (7)

Uwzględniając ten wkład w równaniu (5), możemy zapisać całkowitą siłę ciągu jako sumę wyrażeń (6) oraz (7):

F_c = u \frac{dm}{dt} + A(p_w-p_0).  (8)

W oparciu o siłę ciągu możemy natomiast zdefiniować wielkość zwaną impulsem właściwym, opisującą zmianę pędu rakiety względem utraconej masy:

I_{sp} := \frac{F_c dt}{g  dm}= \frac{F_c}{g  \dot{m}},  (9)

gdzie g\approx 9,81 \frac{m}{s^2} jest przyśpieszeniem grawitacyjnym na powierzchni Ziemi. Natomiast, \dot{m} := \frac{dm}{dt} to strumień masy gazów wylotowych. Impuls właściwy wyrażany jest w sekundach. W celu lepszego zrozumienia definicji (9), warto rozważyć przypadek siły ciągu dany przez równanie (6), zaniedbujące przyczynek od ciśnienia wywieranego na dyszę przez gazy wylotowe. Podstawiając wyrażenie (6) do równania (9), otrzymujemy:

I_{sp} =  \frac{F_c}{g  \dot{m}} =\frac{u \dot{m}}{g  \dot{m}} = \frac{u}{g}.  (10)

W tym wyidealizowanym przypadku, impuls właściwy jest więc innym sposobem wyrażenia prędkości wyrzucanego z silnika rakietowego czynnika roboczego (spalin).

spacex_its_raptor_engine_by_william_black-dajqa73
Podstawowe parametry silnika rakietowego Raptor firmy SpaceX. Źródło

Jako przykład zastosowania wprowadzonych powyżej wielkości, rozważmy przygotowywany przez firmę SpaceX silnik Raptor. Silnik ten znajdzie zastosowanie w rakiecie Big Falcon Rocket (BFR),  która zostanie wykorzystana do lotów na Księżyc oraz na Marsa.  Silnik Raptor wykorzystuje jako paliwo ciekły metan, który wraz z ciekłym tlenem (pełniącym rolę utleniacza) tworzy tak zwany Methalox, o który pisałem w artykule Kosmiczna stacja paliw.

W przypadku silnika Raptor, planowany impuls właściwy na powierzchni Ziemi ma wynosić I_{sp} \approx 334 s, zaś siła ciągu tego silnika ma sięgać F_c \approx 3000 kN = 3 MN. Na tej podstawie, możemy oszacować masę wyrzucanego, w każdej sekundzie, czynnika roboczego (tzw. strumień masy). Posługując się równaniem (9), otrzymujemy:

\dot{m} = \frac{F_c}{I_{sp} g} \approx  900 \frac{kg}{s}.

A więc, w każdej sekundzie pracy, z jednego  silnika wyrzucana jest prawie tona spalin, generujących ciąg rakiety. Pierwszy człon rakiety BFR ma mieć aż 31 takie silniki (we wcześniejszych planach liczba ta wynosiła 42). Mieszczące się, w pierwszym członie rakiety BFR około 3000 ton mieszanki paliwowej, pozwolą więc na pracę silników przez około dwie minuty pracy,  przy pełnym ciągu.  Ponadto, wykorzystując równanie (10) możemy oszacować prędkość gazów wylotowych

u \approx I_{sp}g \approx 3300 \frac{m}{s},

czyli około 10 M. Warto podkreślić, że prędkość ta stanowi jedynie około 10^{-5} prędkości światła (c \approx 300\ 000\ 000 \frac{m}{s}). Dużo większe prędkości wyrzucanej materii, a tym samym większe impulsy właściwe osiągane są w przypadku silników jonowych lub plazmowych. W ich przypadku, impuls właściwy może osiągać wartość kilku tysięcy sekund. Idąc dalej, coraz śmielej brane są obecnie pod uwagę silniki w których czynnikiem roboczym jest promieniowanie powstałe w wyniku anihilacji materii z antymaterią. Czyli tak zwane silniki na antymaterię, w których źródłem zmiany pędu rakiety są fotony poruszające się z prędkością światła (i posiadające pęd p = \hslash \omega). Taki czynnik roboczy wymaga jednakże uwzględnienia efektów relatywistycznych, przewidywanych przez szczególną teorią względności Einsteina. W konsekwencji, w przypadku takim, wyprowadzone powyżej równanie Ciołkowskiego, należy zmodyfikować do tak zwanego równania rakiety relatywistycznej.  To jednak nie koniec podróży w jaką może nas zabrać studiowanie fizyki silników rakietowych. Rozważania egzotycznych napędów rakietowych, takich jak chociażby napęd Alcubierre’a, są fantastyczną okazją do zagłębienia się we współczesną fizykę teoretyczną, czyli fizykę świata przyszłości.

© Jakub Mielczarek

Kosmiczna droga do kwantowej grawitacji

Każdego dnia obserwujemy i odczuwamy działanie siły grawitacji. Dzięki jej obecności upuszczone przedmioty spadają na powierzchnię Ziemi, a nam trudno jest się od niej oderwać. Żeby pokonać siłę grawitacji i uciec w przestrzeń kosmiczną musimy budować potężne rakiety. Ta sama siła utrzymuje ruch Księżyca w pobliżu Ziemi i Ziemię krążącą wokół Słońca. Siła  grawitacji odpowiada za ruch Słońca w Galaktyce i ruch Galaktyki w gromadzie galaktyk. Wszystkie te zjawiska mają jeden wspólny opis w postaci prawa powszechnego ciążenia Newtona. Jest to bardzo prosta relacja mówiąca, że pomiędzy dwoma ciałami posiadającymi masy działa przyciągająca siła grawitacji proporcjonalna do iloczynu ich mas i odwrotnie proporcjonalna do kwadratu odległości pomiędzy środkami ich mas. Współczynnikiem proporcjonalności w tej relacji jest stała grawitacji Newtona G. Prawo powszechnego ciążenia jest piękne, proste i bardzo praktyczne. Nie mówi nam ono jednak zbyt wiele o tym czym siła grawitacji tak w zasadzie jest i skąd się bierze. Znamy skutek i potrafimy go ilościowo opisać, nie znamy jednak jego przyczyny. Co takiego znajduje się pomiędzy ciałami obdarzonymi masą, że przyciągają się one wzajemnie? Czy jest to coś w rodzaju niewidzialnej nici? Do odpowiedzi na to pytanie przybliżył nas Einstein konstruując ogólną teorię względności. Teoria ta opisuję siłę grawitacji jako efekt zakrzywienia przestrzeni. Mianowicie, przestrzeń ulega odkształceniom pod wpływem  znajdujących się w niej ciał obdarzonych masą. Żeby sobie to lepiej uzmysłowić, wyobraźmy sobie rozciągnięty płat materiału. Jeśli umieścimy na nim masywną kulę, spowoduje to zapadnięcie powierzchni materiału. Umieszczona w pobliżu mała kulka stoczy się w kierunku dużej kuli, co zinterpretujemy jako przyciąganie pomiędzy kulkami. Postać tego oddziaływania okazuje się być taka sama (dla mało masywnych ciał) jak ta dana przez prawo Newtona.  Ponadto teoria przewiduje pewne nowe efekty w pobliżu bardzo masywnych ciał, czego nie ujmuje prawo Newtona. Efekty te zostały zweryfikowane obserwacyjnie.

Oddziaływanie grawitacyjne  można więc uważać jako efekt modyfikacji kształtu przestrzeni przez obdarzone masą ciała.  Opis ten daje bardzo intuicyjne wyjaśnienie przyczyny istnienia siły grawitacji, rodzi również jednak nowe pytania. W szczególności czym jest owa tajemnicza przestrzeń ulegająca odkształceniom pod wpływem masy? Teoria względności nie mówi zbyt wiele na ten temat. Z jej perspektywy, przestrzeń jest to rodzaj ciągłego ośrodka nie mającego żadnej struktury wewnętrznej. Istnieją jednak przesłanki teoretyczne wskazujące na to, że przestrzeń powinna, na dostatecznie małych skalach, posiadać pewien rodzaj wewnętrznej struktury. Żeby to zobrazować, wróćmy do przytoczonej analogii przestrzeni jako  rozciągniętego płatu materiału. Widząc tkaninę z dużej odległości wydaję się ona tworzyć ciągłą strukturę. Jeśli jednak popatrzymy na nią z bliska ukaże nam ona swoją włóknistą naturę. Jak sugerują przewidywania teoretyczne, włókna z których może być utkana przestrzeń mają średnice rzędu 10-35 metra, co odpowiada tak zwanej długości (skali) Plancka.

Długość Plancka, odpowiada rozmiarom przy których spodziewamy się występowania efektów kwantowej grawitacji. Najprostszą metodą wprowadzenia długości Plancka jest tak zwana analiza wymiarowa. Rozważmy mianowicie trzy stałe fizyczne:

c– prędkość światła,

G– stałą grawitacji,

\hslash– zredukowaną stałą Plancka.

Wykorzystując te stałe możemy otrzymać wielkość o wymiarze długości

l_{\text{Pl}} = \sqrt{\frac{\hslash G}{c^3}} \approx 1.62 \cdot 10^{-35} \text{m}

zwaną długością Plancka.Teorię opisującą przestrzeń na rozmiarach mniejszych od długości  Plancka określamy mianem kwantowej teorii grawitacji (lub w skrócie kwantowej grawitacji). W odróżnieniu od klasycznej teorii grawitacji, którą jest ogólna teoria względności. Klasyczność oznacza tu ciągły opis przestrzeni, kwantowość natomiast oznacza opis ziarnisty.

Jak się okazuje, znalezienie kwantowego opisu grawitacji jest zadaniem niezwykle trudnym. Badania w tym kierunku rozpoczęto już w latach trzydziestych ubiegłego wieku. Niestety, jak dotąd, nie doprowadziły one do zamierzonego celu. Znaleziono co prawda pewnych kandydatów do miana teorii kwantowej grawitacji takich jak: teorię superstrun, pętlową teorię grawitacji czy teorię kauzalnej dynamicznej triangulacji. Nie wiadomo jednak czy teorie te dają właściwy opis zjawisk fizycznych, ponieważ żadna z tych teorii nie doczekała się, jak dotąd,  doświadczalnego potwierdzenia. Trudność ta wynika z faktu, że przewidywane efekty kwantowej grawitacji występują na niezwykle małych odległościach, porównywalnych z długością Plancka. Aby więc zweryfikować przewidywania pretendentów do  miana teorii kwantowej grawitacji musimy zajrzeć bardzo daleko w głąb struktury materii.

Zazwyczaj, jeśli chcemy zbadać Świat na rozmiarach mniejszych niż te dostępne naszym zmysłom, posługujemy się mikroskopem. W ten sposób możemy poznać np. tajemnice mikroświata na odległościach 10-6 metra. Żeby zajrzeć jeszcze dalej w głąb materii potrzeba trochę większych odpowiedników mikroskopu zwanych akceleratorami cząstek elementarnych.  Pozwalają one dzisiaj badać materię do rozmiarów rzędu 10-18 metra. Są to najmniejsze skale odległości na których zbadaliśmy jak dotąd nasz Wszechświat. Stąd pozostaje więc około siedemnastu rzędów wielkości do skali Plancka. Technika akceleratorowa niestety nie pozwala pójść dużo dalej.

Ta ogromna przepaść odległości skłania wielu fizyków do uznania teorii kwantowej grawitacji jako nieweryfikowalnej doświadczalnie. Stwierdzenie to jest uzasadnione jednak tylko wówczas, jeśli do skali Plancka wiedzie jedynie droga wskazywana przez fizyków cząstek. Czyli bazująca na konstrukcji coraz to większych akceleratorów, pozwalających badać Wszechświat na coraz mniejszych skalach.  Ale czy możliwa jest jakaś inna droga? Jak inaczej zbadać strukturę mikroświata niż budując coraz to większe mikroskopy? Okazuje się, że taka droga potencjalnie istnieje. Wymaga ona jednak  nie budowy nowych mikroskopów, lecz teleskopów. Może to na początku wydawać się trochę dziwne. Przecież teleskopy pomagają nam podglądać odległe miejsca we Wszechświecie i olbrzymie struktury wielokrotnie większe od Słońca, jak galaktyki oraz gromady galaktyk. Droga ta wydaje się więc prowadzić w zupełnie innym kierunku.  Może i kierunek jest przeciwny ale droga, jak się okazuje, prowadzi w to samo miejsce. Zupełnie tak jak na powierzchni Ziemi. Wszystko dzięki temu, że Wszechświat podlega ekspansji. Podczas tej ekspansji odległości pomiędzy ciałami (np. galaktykami) ulegają ciągłemu wzrostowi. Jeśli natomiast popatrzymy wstecz w czasie, ciała te będą się do siebie zbliżać. Gęstość materii we Wszechświecie będzie więc wzrastać. Odległości pomiędzy cząsteczkami będą maleć, aż do osiągnięcia wartości długości Plancka! Możemy się więc spodziewać, że ich zachowanie będzie wtedy zupełnie inne niż to przewidywane w ramach opisu klasycznego.  Taką zasadniczą różnicę przewiduje, wspomniana już, pętlowa teoria grawitacji. Mianowicie mówi ona, że nie jest możliwe dowolne zwiększanie gęstości materii we Wszechświecie. Co za tym idzie, cząstki nie mogą zbliżyć się do siebie na dowolną odległość, lecz tylko na większą niż długość Plancka. Zachowanie takie jest wynikiem ziarnistej struktury przestrzeni. Prowadzi to do bardzo ciekawych konsekwencje odnośnie zachowania się Wszechświata.

W opisie klasycznym nie ma ograniczenia na maksymalną, możliwą do osiągnięcia, gęstość materii.   Idąc więc wstecz w czasie, gęstość materii  we Wszechświecie może rosnąć aż do nieskończoności. Nieskończoność ta nosi nazwę kosmicznej osobliwości i jest bolączką opisu klasycznego. Mianowicie, w stanie tym, teoria klasyczna traci swoją zdolność przewidywania. Pętlowa teoria grawitacji daje rozwiązanie tego problemu usuwając stan kosmicznej osobliwości. Zamiast niefizycznej osobliwości następuje faza tak zwanego odbicia (ang. bounce), podczas której gęstość materii we Wszechświecie osiąga maksymalną, skończoną wartość. W opisie tym objętość Wszechświata najpierw maleje, aż do osiągnięcia minimalnej wartości, a następnie zaczyna rosnąć. Stąd nazwa odbicie.

Efekty kwantowej grawitacji mogły więc mieć bardzo istotny wpływ na ewolucję Wszechświata. W szczególności, mogły doprowadzić do kosmicznego  odbicia.  Miało to jednak miejsce bardzo dawno, bo około czternaście miliardów lat temu.  Dlatego, w dzisiejszym Wszechświecie, mogły nie pozostać już żadne pozostałości fazy obicia. Okazuje się jednak, szczęśliwie dla nas, że część informacji na temat tej fazy może wciąż być dostępna dla obserwacji.  Wszystko  dzięki fotonom mikrofalowego promieniowania tła (ang. cosmic microwave background, CMB) które powstały około  400 000 lat po fazie odbicia. Może to wydawać się bardzo dużo, jest to jednak tylko ułamek sekundy w skalach czasowych Wszechświata.

Szereg eksperymentów dokonuje obecnie pomiarów temperatury tego promieniowania w zależności od kierunku na niebie. Okazuje się, że temperatura ta podlega małym wahaniom. Jest to odzwierciedleniem niejednorodności gęstości materii w okresie formowania się CMB. Niejednorodności te są dla nas niezwykle ważne, ponieważ to właśnie dzięki nim  powstały wszystkie późniejsze struktury we Wszechświecie takie jak galaktyki, gwiazdy czy planety. Te obserwowane małe fluktuacje gęstości miały swój początek  jednak dużo wcześniej. Mianowice podczas tak zwanej fazy kosmicznej inflacji, w której nastąpił bardzo gwałtowny wzrost rozmiarów wszechświata.  To właśnie wtedy, w początkowo jednorodnym Wszechświecie, powstały pierwsze zaburzenia dzięki którym jest on  dziś tak bogaty w struktury. Gdyby nie inflacja, Wszechświat pozostałby jednorodnie wypełnionym materią, nieciekawym tworem. W takim wszechświecie nie miałyby szans powstać struktury złożone takie jak Człowiek.

Fazę kosmicznej inflacji można już dzisiaj badać za pomocą obserwacji mikrofalowego promieniowania tła.  Jest to niesamowite, ponieważ ten etap w historii Wszechświata miał miejsce tuż po fazie odbicia, przewidywanego w ramach pętlowej teorii grawitacji. Słowo „tuż” oznacza tu około 10-36 sekundy. To sugeruje, że faza inflacji mogła nastąpić w konsekwencji efektów kwantowej grawitacji. Tak też wskazują  badania prowadzone w ramach pętlowej grawitacji kwantowej. Mianowicie, teoria ta przewiduje że, po fazie odbicia następuje, w sposób nieunikniony,  faza kosmicznej inflacji!  Efekty pętlowej grawitacji kwantowej prowadzą również do pewnych dodatkowych modyfikacji odnośnie postaci zaburzeń gęstości materii generowanych podczas  fazy inflacji. To natomiast ma wpływ na kształt fluktuacji temperatury  mikrofalowego promieniowania tła. Modyfikacje te są jednak na tyle małe, że jak dotąd nie udało się ich zaobserwować. Możliwe, że nowe obserwacje wykonane przez satelitę Planck doprowadzą od przełomu w tej kwestii. Aby się o tym przekonać, musimy jednak poczekać do moment upublicznienia wyników obserwacji  planowanego na 2012 rok. Już dzisiaj jednak, możemy nauczyć się wiele na temat kwantowej grawitacji poprzez badanie jej wpływu na fazę kosmicznej inflacji.

Droga do kwantowej grawitacji jest kręta i często prowadzi w ślepe zaułki. Droga „na wprost”  z wykorzystaniem akceleratorów cząstek elementarnych wydaje się nie do przejścia. Trzeba więc próbować wytyczać nowe szlaki. Czasem prowadzą one w zupełnie przeciwnym kierunku. Jednym z nich jest kosmiczna droga do kwantowej grawitacji, prowadząca przez bezkresny ocean Wszechświata. Zawiodła ona nas  niezwykle daleko, bo aż 14 miliardów lat wstecz, lecz zarazem tylko 10-36 sekundy od miejsca przeznaczenia. Wiemy więc, że cel jest już blisko.  Tu jednak fale wzmagają się coraz bardziej, i dalsza podróż staje się niezwykle trudna. Pozostaje więc mocno trzymać ster!

© Jakub Mielczarek