Technologie kwantowe a cyberbezpieczeństwo

Jednym z najważniejszych filarów bezpieczeństwa w cyberprzestrzeni jest kryptografia. Z punktu widzenia jednostki, m.in. to dzięki kryptografii możliwe jest korzystanie z systemów bankowości elektronicznej, dokonywanie zakupów online, zachowanie prywatności w komunikacji internetowej, czy też zapewnienie poufności naszej dokumentacji medycznej w medycznych systemach teleinformatycznych.   Z punktu widzenia Państwa, kryptografia to zaś kluczowy element tarczy chroniącej przed cyberatakami na strategiczne komponenty (zarówno infrastrukturę fizyczną, jak i zasoby cyfrowe) oraz narzędzie umożliwiające wymianę i przechowywanie informacji niejawnej, o podstawowym znaczeniu dla interesu i bezpieczeństwa Państwa.

Rozwój technologii kwantowych, opartych na niezwykłych własnościach mikroświata, ma z punktu widzenia cyberbezpieczeństwa znaczenie dwojakie. Z jednej strony, kwantowe przetwarzanie informacji dostarcza nowej metody prowadzenia ataków na klasyczne systemy kryptograficzne, poprzez tzw. kryptoanalizę kwantową. Państwa lub organizacje, które wejdą w posiadanie zaawansowanych systemów umożliwiających prowadzenie obliczeń kwantowych będą więc dysponowały nowym narzędziem stanowiącym potencjalne zagrożenie dla cyberbezpieczeństwa. Z drugiej zaś strony, technologie kwantowe dostarczają zupełnie nowych rozwiązań kryptograficznych, które mogą pozwolić osiągnąć poziom bezpieczeństwa w wymianie i magazynowaniu informacji, niedostępny z wykorzystaniem kryptografii klasycznej. W szczególności, rozwiązania takie mogą uchronić przed atakami z wykorzystaniem kryptoanalizy kwantowej.    

To czy technologie kwantowe ostatecznie obniżą poziom cyberbezpieczeństwa, czy też tylko go wzmocnią, zależy zarówno od tempa i zakresu postępów w rozwoju technologii kwantowych oraz decyzji państw i organizacji międzynarodowych w zakresie wdrażania rozwiązań odpornych na kryptoanalizę kwantową [1].  Z uwagi na wysokie koszty oraz unikalną wiedzę i doświadczenie, które są niezbędne do rozwoju technologii kwantowych, realne są scenariusze w których zarówno zabezpieczenie cyberprzestrzeni przed atakami, jak i wejście w posiadanie kwantowych narzędzi kryptoanalitycznych, będzie postępowało bardzo niejednorodnie. Stanowić to więc może realne zagrożenie dla krajów nie należących do światowej czołówki w obszarze nauki i techniki.

Kryptoanaliza kwantowa

Zagrożenie związane z kryptoanalizą kwantową wynika z możliwości redukcji tak zwanej złożoności obliczeniowej problemów, na których opierają się algorytmy kryptografii klasycznej. Wiąże się to z występowaniem paralelizmu kwantowego (Dodatek A), który jest możliwy do zrealizowania poprzez wykonanie algorytmów kwantowych na odpowiednio zaawansowanych komputerach kwantowych.  Kwantowa redukcja złożoności jest teoretycznie możliwa zarówno w przypadku kryptografii symetrycznej (z tajnym kluczem), jak i kryptografii asymetrycznej (z kluczem publicznym). Otrzymywany, dzięki algorytmom kwantowym, stopień redukcji złożoności jest jednak zasadniczo różny dla tych dwóch przypadków.  W konsekwencji, niektóre stosowane obecnie algorytmy kryptografii symetrycznej pozostaną niepodatne na kryptoanalizę kwantową. Natomiast, np. wykorzystywane powszechnie w bankowości elektronicznej,  systemach płatniczych, czy też  rozwiązaniach opartych o technologię Blockchain, algorytmy kryptografii asymetrycznej zostaną wystawione na potencjalne zagrożenie.

Przedyskutujmy powyższą kwestię bardziej szczegółowo. W przypadku kryptografii symetrycznej, siła zabezpieczenia opiera się, w dużej mierze, na wielkości przestrzeni tajnego  klucza. Przykładowo, dla stosowanego powszechnie  algorytmu symetrycznego AES (Advanced Encryption Standard) z kluczem 256 bitowym, przestrzeń klucza posiada N = 2256 elementów, co jest w przybliżeniu równe jeden i 77 zer. Przeszukanie tak ogromnego zbioru w poszukiwaniu tajnego klucza jest praktycznie niemożliwe, zarówno korzystając z obecnych, jak i możliwych do przewidzenia przyszłych zasobów obliczeniowych.

Zastosowanie algorytmów kwantowych pozwoli przyśpieszyć proces poszukiwania przestrzeni klucza w ataku siłowym (ang. brute force). Mianowicie, jak pokazał w 1996 roku Lov Grover, wykorzystanie obliczeń kwantowych pozwala zredukować średnią ilość prób potrzebnych do znalezienia elementu w nieuporządkowanym N elementowym zbiorze z N/2 do pierwiastka kwadratowego z N, czyli N1/2. Oznacza to, że w przypadku AES-256, komputer kwantowy będzie wciąż potrzebował wykonać około N1/2=2128 prób w celu znalezienia tajnego klucza. Nawet więc dysponując komputerem kwantowym, na którym zaimplementowany mógłby zostać algorytm Grover’a, siła szyfru pozostanie na poziomie porównywalnym z AES z kluczem 128 bitowym. Jest to zabezpieczenie zupełnie wystarczający dla większości standardowych sytuacji.

Rzecz ma się jednak inaczej w przypadku szyfrów kryptografii asymetrycznej (z kluczem publicznym). Istota kryptografii asymetrycznej opiera się na trudności  obliczeniowej pewnych operacji matematycznych, dla których zaś operacja „przeciwna” jest łatwa do przeprowadzenia. Do najbardziej znanych przykładów algorytmów tego typu zaliczają się DH (Diffie-Hellman), RSA (Rivest-Shamir-Adleman) oraz ECC (Elliptic Curve Cryptography). Algorytm DH jest oryginalnie pierwszą propozycją kryptografii z kluczem publicznym a trudnym problemem jest tutaj znajdowanie tak zwanego logarytmu dyskretnego (logarytmu określonego na skończonym zbiorze liczb). Z kolei, popularny algorytm RSA wykorzystuje złożoność obliczeniową rozkładu liczby na czynniki pierwsze (zagadnienie faktoryzacji). Wadą algorytmów DH i RSA jest konieczność stosowania stosunkowo długich kluczy (obecnie powszechnie stosuje się klucze 2048 bitowe). Problem ten rozwiązuje zastosowanie algorytmów ECC, wykorzystujących problem złożoności logarytmu dyskretnego dla działania zdefiniowanego na krzywej eliptycznej. Poziom bezpieczeństwa porównywalny z DH lub RSA z kluczem 2048 bitwym otrzymamy stosując algorytm ECC z kluczem 224 bitowym. Między innymi z tego powodu, algorytmy ECC znalazły szerokie zastosowanie w technologii Blockchain.

Okazuje się, że trudność obliczeniową na której oparte są przytoczone powyżej algorytmy kryptografii asymetrycznej można sprowadzić do zagadnienia znalezienia okresu pewnej funkcji. O ile jednak, znajdowanie okresu funkcji jest z perspektywy komputerów klasycznych zadaniem trudym obliczeniowo, nie jest już takim dla komputerów kwantowych. Mianowicie, jak pokazał w 1994 roku Peter Shor, obliczenia kwantowe pozwalają zredukować złożoność problemu znajdowania okresu funkcji z  problemu wykładniczego w funkcji ilości bitów danej liczby do problemu wielomianowego klasy BPQ (Dodatek B). Fakt ten jest głównym źródłem zagrożenia związanego z kryptoanalizą kwantową.

CyberSec
Obwód kwantowy dla algorytmu Shora na tle fragmentu książki Georga Orwella 1984, zakodowanej za pomocą kolorów przez Hyo Myoung Kima [cała książka].

W optymalnej konfiguracji, Algorytm Shora dla przypadku z kluczem n-bitowym wymaga rejestru kwantowego zawierającego 2n+3 kubity logiczne. Dla algorytmu RSA-2048 są to więc 4099 kubity logiczne. Jednakże, z uwagi na błędy występujące w fizycznych realizacjach komputerów kwantowych, konieczne jest stosowanie rozbudowanych systemów kwantowej korekcji błędów. Zastosowanie korekcji błędów wymaga użycia co najmniej pięciu fizycznych kubitów do zakodowania jednego kubitu logicznego. Absolutnie minimalna liczba fizycznych kubitów, potrzebnych do przeprowadzenia kwantowej kryptoanalizy algorytmu RSA-2048 na komputerze kwantowym, jest więc rzędu 20 000. W praktyce jednak, konieczne może się okazać wykorzystanie dużo większej ilości kubitów pomocniczych, co może zwiększyć tę liczbę do setek tysięcy lub nawet milionów kubitów. Równie ważną kwestią jest osiągnięcie odpowiednio długiego czasu koherencji, gdyż realizacja powyższego algorytmu będzie wymagać przynajmniej 107 kroków obliczeniowych.

Oszacowane powyżej wielkości mogą wydawać się zupełnie abstrakcyjne z perspektywy dostępnych dzisiaj możliwości przeprowadzania obliczeń kwantowych. Dla przykładu, najbardziej zaawansowany komputer kwantowy firmy Google posiada 53 kubity i jest w stanie wykonać kilkanaście kroków obliczeniowych. Jednakże, przyjmując hipotetyczny wykładniczy charakter rozwoju technologii kwantowych (analogiczny do prawa Moore’a), osiągnięcie poziomu miliona kubitów jest realne w perspektywie 30 lat. Załóżmy, że skala czasowa podwojenia ilości kubitów w procesorze kwantowym będzie wynosiła około 2 lata (podobnie jak obecnie ma to miejsce w przypadku liczby tranzystorów w procesorach klasycznych). W takim przypadku, w kolejnych latach możemy prognozować wartości: 100 (2021), 200 (2023), 400 (2025), 800 (2027), 1600 (2029), 3200 (2031), 6400 (2033), 12800 (2035), 25600 (2037), 51200 (2039), 102400 (2041), 204800 (2043), 409600 (2045), 819200 (2047), 1638400 (2049), … . Zgodnie z tą naiwną ekstrapolacją, poziom milionów kubitów powinien zostać osiągnięty do roku 2050. Istnieją również bardziej optymistyczne prognozy, wskazujące na możliwość nawet podwójnie wykładniczego rozwoju technologii kwantowych („prawo” Neven’a).

W kontekście kryptoanalizy, warto przywołać także przypadek funkcji skrótu (ang. hash functions), które są nieodzownym elementem współczesnych protokołów kryptograficznych.  Do najpowszechniejszych z nich należą: MD4, MD5, SHA-1, SHA-2 i SHA-3. Kryptoanaliza siłowa funkcji skrótu jest zasadniczo podobna do przypadku kryptografii symetrycznej i opiera się na wykorzystaniu algorytmu Grovera. W przypadku SHA-3 ze skrótem 512 bitowym, odporność na tzw. preimage attack jest więc na poziomie algorytmu symetrycznego z kluczem 256 bitowym. Tego samego poziomu jest odporność na ataki kolizyjne. Z uwagi na tę niepodatność na kryptoanalizę kwantową, funkcje skrótu rozpatruje się jako jeden z najbardziej obiecujących komponentów tak zwanej kryptografii postkwantowej.

Kryptografia postkwantowa

Kryptografia postkwantowa [2] jest odpowiedzią na potencjalne zagrożenie związane z  kryptoanalizą kwantową algorytmów klasycznej kryptografii asymetrycznej. Z uwagi na to, że kwantowe przyśpieszenie wykładnicze (Dodatek A) nie występuje w przypadku problemu przeszukiwania przestrzeni klucza, nie istnieją obecnie podstawy do obaw o bezpieczeństwo silnych algorytmów kryptografii symetrycznej, takich jaki AES-256, czy też algorytmów opartych na funkcjach skrótu.

Potencjalne zagrożenie związane z kwantową kryptoanalizą algorytmów kryptografii asymetrycznej nie może jednak zostać zbagatelizowane. Nawet jeśli kwantowe możliwości obliczeniowe umożliwiające kryptoanalizę RSA z kluczem 2048 bitowym pojawią się dopiero za 30 lat, należy podejmować działania zapobiegawcze. Po pierwsze, wynika to z faktu, że proces wdrażania (standaryzacja i implementacja) nowych rozwiązań kryptograficznych jest długotrwały, wymagając zarówno prac badawczych, szeroko zakrojonych testów podatności na kryptoanalizę, jak i samej implementacji w ramach istniejących systemów informatycznych. Po drugie, wiele zaszyfrowanych informacji pozostaje wrażliwymi przez okres kilkudziesięciu lat. Ich przechowywanie (jako szyfrogramy) i odszyfrowanie w momencie pojawienia się odpowiednich możliwości obliczeniowych, może doprowadzić nawet do ogólnoświatowego kryzysu. Dla przykładu, dostępne publicznie mogą stać się dane osobowe, transakcje bankowe, dane medyczne milionów osób, co otworzy szereg możliwości działań natury przestępczej.  Ponadto, zgodnie z Art. 25 ustawy z dnia 22 stycznia 1999 r. o ochronie informacji niejawnych: „Informacje niejawne stanowiące tajemnicę państwową podlegają ochronie, w sposób określony ustawą, przez okres 50 lat od daty ich wytworzenia.” Biorąc pod uwagę możliwość wykorzystania algorytmów kryptografii asymetrycznej do przetwarzania tego typu informacji (chociażby poprzez wykorzystanie kryptografii asymetrycznej do wymiany klucza), realność kryptoanalizy kwantowej w perspektywie 30 lat stawia pod znakiem zapytania bezpieczeństwo przetwarzanej obecnie informacji niejawnej, stanowiącej tajemnicę państwową.

Z uwagi na zagrożenia powyższego typu, w 2016 roku amerykański Narodowy Instytut Standaryzacji i Technologii (NIST) ogłosił program opracowania standardu kryptografii postkwantowej, odpornego na kryptoanalizę kwantową. Proces ten przebiega na zasadzie konkursu, podobnie jak to wcześniej miało miejsce np. w przypadku standardu AES. Obecnie, w drugiej rundzie, rozważana jest pula  26 propozycji. W pierwszej rundzie, z początkowych 250 zgłoszeń wybranych zostało 69 najbardziej obiecujących rozwiązań. Cały proces ma zostać zakończony do roku 2022. Rozpatrywany wachlarz rozważanych algorytmów kryptografii postkwantowej jest szeroki.  Do najbardziej obiecujących kierunków należą zaś:

  • Algorytmy kratowe (ang. lattice-based cryptography)
  • Algorytmy  oparte na kodach korekcyjnych (ang. code-based cryptography)
  • Kryptografia wielu zmiennych (ang. multivariate cryptography)
  • Podpis elektroniczny opary o funkcje skrótu (ang. hash-based signatures)

Z uwagi na subtelną naturę rozwiązań kryptograficznych, standaryzacja jest kluczowym elementem poprzedzającym szeroką implementacji nowych algorytmów. Etap ten  jest długotrwały i powiązany jest z badaniem odporności danych rozwiązań na ataki kryptologiczne. Należy mieć jednak na uwadze to, że nawet pomyślne wyłonienie nowego standardu nie gwarantuje późniejszego długotrwałego  bezpieczeństwa. Wiązać się to może zarówno z odkryciem niezauważonych wcześniej słabości rozwiązań, z pojawieniem się nowych schematów ataków oraz nowymi możliwościami obliczeniowymi. Dla przykładu, zaprojektowany na zlecenie NIST i stosowany od połowy lat siedemdziesiątych ubiegłego wieku symetryczny szyfr DES (z kluczem efektywnie 56 bitowym), okazał się możliwy do złamania już po 20 latach od jego wprowadzenia.

Fakt iż, możliwości kryptoanalizy szyfrów kryptografii postkwantowej są wciąż stosunkowo słabo poznane, istnienie realna obawa, że nawet wyłonione w procesie standaryzacji rozwiązania będą podatne na pewne typy ataków. Dlatego też, w początkowej fazie implementacji wydaje się zasadne opieranie się w jak największym stopniu na dobrze zbadanych elementach obecnych systemów kryptograficznych, takich jak funkcje skrótu lub kody korekcyjne. 

O ile proces standaryzacji prowadzony przez NIST jest w toku, w ramach niezależnych projektów podano już pewne rekomendacje co do algorytmów kryptografii postkwantowej. W szczególności, europejski projekt  PQCRYPTO, finansowany w ramach programu Horyzont 2020, rekomendował AES-256 i  Salsa20 z kluczem 256 bitowym jako postkwantowe algorytmy kryptografii symetrycznej. Dla kryptografii asymetrycznej, rekomendowany został natomiast szyfr McEliece’a, będący przykładem algorytmu opartego na kodach korekcyjnych [3]. 

Certyfikowana kwantowa przypadkowość

Jednymi z komponentów systemów kryptograficznych, mającymi fundamentalne znaczenie z punktu widzenia bezpieczeństwa,  są generatory liczb losowych. W praktyce, są to generatory liczb pseudolosowych, co na przykład w przypadku szyfrów strumieniowych (wykorzystywanych np. do zabezpieczania  transmisji w telefonii komórkowej) jest własnością pożądaną. Jednakże, już w przypadku generowania kluczy (będących ciągami bitów) oczekujemy niepowtarzalnej przypadkowości. Dotyczy to zarówno kluczy wykorzystywanych w kryptografii symetrycznej, jak i asymetrycznej.

Błędy w implementacji generatorów pseudolosowych mogą istotnie wpłynąć na obniżenie bezpieczeństwa, wykorzystujących je algorytmów kryptograficznych. Znanym przykładem jest wykazanie istnienia „tylnej furtki” w generatorze pseudolosowym Dual_EC_DRBG. Ujawnione przez Edwarda Snowdena informacje na temat programu deszyfrażu Bullrun, sugerują, że obecność furtki mogło być  działaniem celowym amerykańskiej National Security Agency (NSA) [4].  O ile więc furtki takie mogą być wprowadzane celowo przez agencje dbające o bezpieczeństwo publiczne, ich obecność stwarza również możliwość wykorzystania przez osoby, instytucje i państwa nieprzyjazne. 

Probabilistyczna natura mechaniki kwantowej stwarza atrakcyjną możliwość budowy generatorów losowych. Co więcej, rozwiązania takie są już dostępne komercyjnie.  Jednakże, otwarte zostaje potencjalne zagrożenie związane z wykorzystaniem  możliwych „tylnych furtek” w tego typu rozwiązaniach. Dlatego też, dąży się do opracowania rozwiązań które będą gwarantowały zarówno losowość, jak i niepodatność na ataki, zarówno na poziomie sprzętu, jak i oprogramowania.

Jednym z pojeść do tego zagadnienia jest wykorzystanie trudności obliczeniowej problemu przewidzenia rozkładu prawdopodobieństwa pomiarów dla odpowiednio dużych pseudolosowo-generowanych obwodów kwantowych. Własność tę można wykorzystać do generowania certyfikowanych kwantowo losowych ciągów binarnych (ang. certified quantum randomness) [5]. Losowość otrzymanego ciągu bitów jest zagwarantowana złożonością obliczeniową problemu przewidzenia z jakim prawdopodobieństwem dany ciąg może zostać wygenerowany przez obwód kwantowy. Ponadto, nawet kiedy źródło generatora obwodów zostałoby upublicznione, wygenerowane wartości losowe zachowają prywatność.

Metoda ta może być pomyślnie stosowana już z wykorzystaniem dostępnych obecnie komputerów kwantowych, posiadających kilkadziesiąt (zaszumionych) kubitów fizycznych. Dowodem na to jest niedawny rezultat otrzymany za pomocą komputera kwantowego opracowanego przez firmę Google. Rozważane zagadnienie próbkowaniem (ang. sampling), które przeprowadzono na 53 kubitowym procesorze może zostać zaadoptowane do zapewnienia certyfikowanej kwantowej przypadkowości [6].

Zastosowanie certyfikowanej kwantowej generacji kluczy może istotnie wzmocnić bezpieczeństwo zarówno konwencjonalnej kryptografii (asymetrycznej i symetrycznej) jak i algorytmów kryptografii postkwantowej. Jest to przykład rozwiązania hybrydowego w którym wykorzystuje się połączenie znanych i możliwych do zastosowania algorytmów kryptografii klasycznej z najnowszymi osiągnięciami w obszarze obliczeń kwantowych.

Kwantowa dystrybucja klucza

Nawet jeśli jest to możliwe w niepraktycznie dużych skalach czasowych, algorytmy kryptografii klasycznej, z wyłączeniem szyfru z kluczem jednorazowym (ang. one-time pad), są zawsze możliwe do złamania. Mechanika kwantowa dostarcza jednakże teoretycznie niepodatnej na kryptoanalizę metody szyfrowania informacji.  Opracowywaniem tego typu rozwiązań zajmuje się kryptografia kwantowa.

Kwantowa dystrybucja klucza (ang. quantum key distribution – QKD) [7] jest, rozważaną w ramach kryptografii kwantowej,  metodą bezpiecznego przesyłania sekretnego klucza za pośrednictwem stanów kwantowych pojedynczych fotonów. Metoda ta wykorzystuje kwantowe własności mikroświata (w szczególności, tak zwane twierdzenie o  zakazie klonowania kwantowego) do przesyłania informacji. Ponieważ przepustowość wykorzystywanych do QKD tzw. kanałów kwantowych nie dorównuje tym osiąganym w klasycznych łączach światłowodowych oraz radiowych, łącza kwantowe wykorzystywane są obecnie do przesyłania sekretnych kluczy, pozwalających zaszyfrować (klasyczną) wiadomość, nie zaś do transmisji samej wrażliwej informacji.  Udostępniony, za pośrednictwem QKD, klucz może być wykorzystany do zaszyfrowania danych np. z użyciem silnego symetrycznego szyfru AES-256.

Kwantowa dystrybucja klucza jest rozwiązaniem,  które zostało już wdrożone do komercyjnego użytku.  Jednakże, dostępne obecnie rozwiązania posiadają jedno kluczowe ograniczenie. Mianowicie, jest to dystans, na który możemy przesłać zabezpieczoną kwantowo informację. Wiąże się to z tłumieniem fotonów w światłowodzie i koniecznością stosowania skomplikowanych tzw. powielaczy kwantowych. Obiecującym rozwiązaniem tego problemu jest przesyłanie fotonów z zakodowaną kwantowo informacją poprzez atmosferę oraz przestrzeń kosmiczną. Udane próby międzykontynentalnej QKD z wykorzystaniem kwantowych technologii satelitarnych udało się przeprowadzić w 2017-tym roku. Obecnie trwają prace nad kilkoma projektami satelitarnymi, które mają na celu rozwój kwantowych technologii związanych z łącznością satelitarną. 

Połączenie światłowodowej oraz satelitarnej łączności kwantowej może pozwolić urzeczywistnić idę tzw. internetu kwantowego – niepodatnego na kryptoanalizę kanału wymiany informacji.  Stworzenie podwalin dla internetu kwantowego to m.in. jeden z filarów, rozpisanego na okres dziesięciu lat (2018-2028), flagowego programu Komisji Europejskiej – Quantum Flagship. Ponadto, w ramach projektu OPENQKD (Open European Quantum Key Distribution Testbed) powstaje obecnie w Europie eksperymentalna sieć do kwantowej dystrybucji klucza, której jeden z węzłów znajdzie się również w Polsce.

Warto w tym miejscu podkreślić, że systemy do kwantowej dystrybucji klucza, choć teoretycznie bezwarunkowo bezpieczne, mogą stać się jednak przedmiotem ataków. Istnieje mianowicie szerokie spektrum możliwych ataków fizycznych, wykorzystujących błędy w implementacji systemów do QKD. Jedną z prób rozwiązania tego problemu jest opracowanie algorytmów kryptografii kwantowej gwarantujących bezpieczeństwo w wymianie informacji, niezależne do wad implementacji fizycznych. Konieczne są jednakże dalsze prace zarówno teoretyczne, jak i eksperymentalne w tym obszarze.

Podsumowanie

Infosfera stała się kluczowym elementem współczesnej aktywności ludzkiej. Jej dynamiczny rozwój doprowadził jednak do pojawienia się zagrożeń zupełnie nowego typu. Dotyczy to zarówno poziomu jednostek, jak i społeczeństw. W konsekwencji, cyberprzestrzeń stała się równoprawnym do wody, lądu, powietrza i przestrzeni kosmicznej, obszarem działań wojennych. Powaga problemu doprowadziła do szerokiego zaangażowania państw i organizacji w obszarze zapewnienia bezpieczeństwa w cyberprzestrzeni. W Polsce, ważnym krokiem stało się sformułowanie w 2015 roku Doktryny Cyberbezpieczeństwa Rzeczypospolitej Polskiej [8]. Elementem realizacji jej założeń jest konsolidacja polskich zasobów  w obszarze cyberbezpieczeństwa i kryptologii w ramach utworzonego w 2019 roku Narodowego Centrum Bezpieczeństwa Cyberprzestrzeni (NCBC), funkcjonującego wcześniej jako Narodowe Centrum Kryptologii (NCK).

Technologie kwantowe, które coraz odważniej wychodzą z obszaru badawczego do fazy wdrożeń, stanowią zarówno potencjalne zagrożenie dla cyberbezpieczeństwa, jak i dają narzędzie dla jego wzmocnienia do bezprecedensowego poziomu. Zagrożenie związane jest głównie z możliwością kryptoanalizy algorytmów kryptografii asymetrycznej (w szczególności RSA i ECC). Natomiast, silne algorytmy kryptografii symetrycznej pozostaną odporne na kryptografię kwantową. W mojej ocenie, realistyczna wydaje się możliwość kryptoanalizy algorytmu RSA z kluczem 2048 bitowym w perspektywie czasowej 30 lat. Warto również mieć na uwadze prawdopodobieństwo opracowania nowych algorytmów, które mogą znaleźć zastosowanie w kryptoanalizie kwantowej.

Odpowiedzią na zagrożenie związane z kryptoanalizą kwantową jest kryptografia postkwantowa. Zadaniem które sobie stawia jest opracowanie algorytmów kryptografii z kluczem publicznym, niepodatnych na ataki kwantowe. W toku jest proces standaryzacji algorytmów kryptografii postkwantowej, po zakończeniu którego (około roku 2023) można spodziewać intensyfikacji w implementacji tego typu rozwiązań. Należy jednak zdawać sobie sprawę z faktu, że algorytmy kryptografii postkwantowej wciąż wymagają testów pod kątem kryptoanalizy, zarówno konwencjonalnej, jak i kwantowej.

Z drugiej strony, technologie kwantowe otwierają obiecującą możliwość implementacji rozwiązań kryptografii kwantowej. Jednym z nich jest kwantowa generacja klucza. Rozwiązania takie stają się możliwe do urzeczywistnienia z wykorzystaniem opracowywanych obecnie komputerów kwantowych. W perspektywie nadchodzącej dekady, certyfikowane kwantowe generowanie kluczy pozwoli wzmocnić bezpieczeństwo kryptografii klasycznej, jak również algorytmów postkwantowych. Kolejnym, bardzo obiecującym, rozwiązaniem dostarczanym przez kryptografię kwantową jest kwantowa dystrybucja klucza. Naziemna i satelitarna sieć kanałów kwantowych (tzw. kwantowy internet) pozwoli na bezwarunkowo bezpieczne przekazywanie sekretnych kluczy. Z ich pomocą, możliwe będzie  późniejsze przesyłanie informacji kanałami klasycznymi, stosując silne szyfry symetryczne.

Budowa infrastruktury do komunikacji kwantowej, która ostatecznie zapewni nowy poziom bezpieczeństwa w przesyle informacji jest zadaniem niezwykle złożonym i wymagającym integracji wielu zasobów i kompetencji. Jej utworzenie wykreuje zupełnie nowe realia dla cyberbezpieczeństwa. Warto w tym kontekście zaznaczyć, że z uwagi skomplikowaną naturę systemów do komunikacji kwantowych i kryptografii kwantowej, ważnym elementem będzie proces szkolenia specjalistów, którzy będą w stanie analizować subtelności stosowanych rozwiązań i przewidywać możliwość występowania nowych zagrożeń.

Przeprowadzona tu analiza jedynie zarysowuje zagadnienie cyberbezpieczeństwa kwantowego, akcentując podstawowe możliwości i zagrożenia. Dalsza szersza dyskusja, łącząca płaszczyzny: polityczną, akademicką, militarną i przedsiębiorczą, jest konieczna w celu wypracowania optymalnych rozwiązań, które pozwolą na wykorzystanie technologii kwantowych do zapewnienia jeszcze wyższego poziomu cyberbezpieczeństwa w Polsce i na świecie.   

Dodatek A – Kwantowy elementarz

Technologie kwantowe tworzy obecnie szerokie spektrum rozwiązań, wykorzystujących kwantową naturę mikroświata, opisywaną przez mechanikę kwantową. Do najważniejszych przykładów należą: systemy przetwarzania informacji kwantowej (komputery kwantowe),  systemy łączności kwantowej (oparte o kryptografię kwantową) i  systemy metrologii kwantowej (np. kwantowe magnetometry).   

Szczególną klasą układów kwantowych, odgrywają kluczową rolę w kwantowym przetwarzaniu informacji, są kubity. Kubity można postrzegać jako kwantowe odpowiedniki klasycznych bitów, mogące występować w kwantowych superpozycjach stanów „0” i „1”. Sytuacja robi się jeszcze ciekawsza kiedy rozważamy wiele oddziałujących ze sobą kubitów. Właśnie takie złożenie kubitów stanowi rejestr komputera kwantowego, na którym, poprzez wykonywanie odpowiednich operacji (unitarnych), przeprowadzane są obliczenia kwantowe. Wyzwaniem związanym z budowaniem tego typu maszyn jest odseparowanie rejestru kwantowego od środowiska zewnętrznego, które zaburza jego kwantową naturę. Wyzwaniem jest również odpowiednie kontrolowanie kubitów i przeprowadzanie na nich operacji. Przez wiele lat, fizycy zmagali się z osiągnięciem odpowiedniego poziomu koherencji kwantowej i sterowalności rejestrów kwantowych. Przełomowe okazało się wykorzystanie nadprzewodzących kubitów, które ostatecznie doprowadziło do eksperymentalnego wykazania przewagi (w wczasie obliczeń) komputera kwantowego nad najsilniejszym dostępnym superkomputerem klasycznym. Udało się to ostatecznie wykazać firmie Google, dla problemu próbkowania ciągów binarnych z zadanym przez obwód kwantowy  rozkładem prawdopodobieństwa [6].

Trudność w emulowaniu obliczeń kwantowych na komputerach klasycznych wiąże się z faktem, że stan układu n kubitów opisywany jest w 2n wymiarowej przestrzeni Hilberta. W konsekwencji, na przykład by opisać układ 100 kubitów należy użyć wektora posiadającego około 1030 składowych. Próba zapisania takiego wektora zarówno w obecnych jaki i możliwych do wyobrażenia przyszłych komputerach klasycznych jest praktycznie skazana na niepowodzenie.  Z drugiej strony, operowanie w 2n wymiarowej przestrzeni Hilberta,  dysponując n kubitami umożliwia wykonywanie wykładniczo rosnącej z n liczby operacji. Na własności tej opiera się tzw. paralelizm kwantowy, mogący w pewnych przypadkach doprowadzić do kwantowego przyśpieszenia wykładniczego (ang. exponential speed-up) w rozwiązaniu pewnych problemów. Z sytuacją taką spotykamy się, w szczególności, w przypadku algorytmu faktoryzacji Shora, znajdującym zastosowanie w kryptoanalizie kwantowej.

Dodatek B – Złożoność obliczeniowa 

Złożoność obliczeniowa, w uproszczeniu określa poziom trudności rozwiązania danego problemu.  Dla przykładu, rozważmy problem znalezienia konkretnego elementu w nieuporządkowanym zbiorze N elementowym. Element taki znajdziemy w średnio N/2 próbach. Czas potrzebny na znalezienie elementu będzie więc skalował się liniowo wraz z liczebnością (mocą) zbioru. Jest to przykład problemu należącego do wielomianowej klasy złożoności – P (ang. Polynomial). Innym  przykładem problemu należącego do klasy P jest mnożenie liczb.

Nie wszystkie znane problemy należą jednak do kasy P, a przynajmniej tak się wydaje. Okazuje się mianowicie, że istnieje cały szereg problemów dla których nie udało się, jak dotąd, zaproponować algorytmów ich rozwiązywania które należałyby do klasy P. Problemy takie określamy mianem NP (ang. Nondeterministically Polynomial). Są to takie problemy dla których znając wynik możemy w czasie wielomianowym zweryfikować czy propozycja wyniku jest rozwiązaniem czy też nie. Przykładem takiego problemu, jest rozkład liczby złożonej na czynniki pierwsze (problemu faktoryzacji). Problemy klasy NP znajdują szerokie zastosowanie w kryptologii. Otwartym i jednym z najważniejszych problemów matematycznych jest odpowiedzenie na pytanie czy faktycznie NPP?

Uogólnienie rozważań do obliczeń kwantowych wymaga wprowadzenia nowych klas złożoności. Na potrzeby tego artykułu, wprowadzimy jedynie klasę BQP (ang. bounded-error quantum polynomial time). Do klasy tej należą problemy, dla których istnieje możliwość znalezienia rozwiązania w czasie wielomianowym, z prawdopodobieństwem co najmniej 2/3 (czyli błędem nie większym niż 1/3). Okazuje się, że kwantowy algorytm Shora pozwala zredukować złożoność obliczeniową problemu faktoryzacji, klasycznie klasyfikowanego jaki problem wykładniczy, do takiej właśnie złożoności. Jest to przykład kwantowego przyśpieszenia wykładniczego.

Bibliografia

[1] M. Mosca,  Cybersecurity in an Era with Quantum Computers: Will We Be Ready? IEEE Security & Privacy, September/October 2018, pp. 38-41, vol. 16
[2] D. J. Bernstein, T. Lange,  Post-quantum cryptography, Nature, 549(7671), 188-194.
[3] PQCRYPTO – Post-Quantum Cryptography for Long-Term Security. Initial recommendations of long-term secure post-quantum systems
[4] D. J. Bernstein, T. Lange, R. Niederhagen, Dual EC: A Standardized Back Door. In: Ryan P., Naccache D., Quisquater JJ. (eds) The New Codebreakers. Lecture Notes in Computer Science, vol 9100. Springer, Berlin, Heidelberg
[5] Acín, A., Masanes, L. Certified randomness in quantum physics. Nature 540, 213–219 (2016).
[6] Arute, F., Arya, K., Babbush, R. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)
[7] A. Shenoy-Hejamadi, A. Pathak, S. Radhakrishna, Quantum Cryptography: Key Distribution and Beyond, Quanta 2017; 6: 1–47
[8] Doktryna Cyberbezpieczeństwa Rzeczypospolitej Polskiej, 2015.

                                                                                                                               © Jakub Mielczarek

Artykuł został opublikowany na portalu CyberDefence24.

Dwanaście technologii jutra

Żyjemy w niesamowitych czasach intensywnego rozwoju wspaniałych technologii. Wiele z nich wywodzi się z zaawansowanych i kosztownych badań podstawowych, inne są wynikiem inżynieryjnej wirtuozerii, bazującej na ugruntowanej już wiedzy naukowej. Jedno jest pewne,  technologie te transformują świat w którym żyjemy  i przez to, w pewnym sensie, również nas samych. Żeby ocenić jakie będą skutki tych przemian należy zrozumieć możliwości i ograniczenia wyłaniających się nowych rozwiązań. Ich lista jest długa, a szczegółowa analiza żmudna i wielowymiarowa. Nie jest jednak moim celem by ją tutaj przeprowadzać. Mógłbym Cię po prostu zanudzić. W zamian, chciałbym zwięźle przedstawić 12 wybranych przeze mnie (jednakże stosunkowo reprezentatywnych) kierunków. Celem jaki sobie stawiam jest to byś mogła lub mógł spojrzeć na nie niejako z lotu ptaka, umożliwiając Ci uchwycenie szerszej perspektywy. Mam nadzieję, że mój wysiłek pomoże Ci, choć w pewnym wymiarze, ujrzeć ostrzej świat w niedalekiej przyszłości i dostrzec w nim dla siebie nowe możliwości, które pozwolą Tobie lub też np. Twojej firmie rozwinąć się. Zrozumienie technologii, pozwoli Ci również lepiej przygotować się na nadchodzące zmiany, przez co łatwiej się do nich dostosujesz i szerzej wykorzystasz pojawiające się nowe szanse. Wybrane przeze mnie kierunki są obecnie intensywnie rozwijane i z dużym prawdopodobieństwem będą miały istotne znaczenie w nieodległej przyszłości, przez którą rozumiem najbliższą dekadę (2020-2030). Na konstrukcję tej listy niewątpliwe miały wpływ moje osobiste zainteresowania i obszar posiadanych kompetencji. Z tego powodu, nie jest ona obiektywna, choć starałem się by cechowała się zróżnicowaniem i zawierała rozwiązania nie tylko z obszarów najbliższych mojej ekspertyzie. Ważnym aspektem, który staram się podkreślić, to znaczenie dyskutowanych kierunków w kontekście wyzwań stojących przed światem.

1. Komputery kwantowe

Pozwolę sobie zacząć od najbliższego mi, jako fizykowi teoretykowi, tematu czyli od technologii kwantowych, a mówiąc precyzyjniej skoncentruję się tutaj na kwestii komputerów kwantowych. Do innych przykładów technologii kwantowych powrócę w punktach 26 i 7.  Komputery kwantowe opierają swoje działanie o zasady mechaniki

ibm-q
Komputer kwantowy firmy IBM. Źródło

kwantowej (fizyki mikroświata). Choć teoretyczne podwaliny ich funkcjonowania powstały jeszcze w latach osiemdziesiątych ubiegłego wieku, dopiero ostatnie lata przyniosły intensywne przyśpieszenie w rozwoju kwantowych technologii obliczeniowych. Rozwój ten przebiegał i nadal przebiega w pierwszej fazie charakteryzującej nowe technologie, związanej z szybkim wzrostem zainteresowania. Efekt ten, na zasadzie sprzężenia zwrotnego napędza rozwój technologi, generując rosnący entuzjazm, w szczególności  inwestorów. Pęcznieją również oczekiwania, które niestety często rozbieżne są z faktycznymi możliwościami technologii. Również kwantowy tzw. hype czeka niebawem przejście do fazy ostudzenia emocji. Technologie kwantowe jednak wybronią się, ponieważ dadzą w wielu obszarach przewagę nad komputerami klasycznymi. Wynika to w szczególności z tak zwanego paralelizmu kwantowego, umożliwiającego zrównoleglenie danego problemu i przez to redukcję jego złożoności obliczeniowej. Sztandarowymi przykładami są: algorytm faktoryzacji Shore’a, algorytm przeszukiwania (nieuporządkowanych zbiorów) Grovera lub algorytm kwantowego wyżarzania (ang. quantum annealing). Ograniczenia kwantowych komputerów wiążą się jednak z dużą podatnością stanów kwantowych kubitów na środowisko zewnętrzne. W celu zredukowania  tego efektu (tzw. kwantowej dekoherencji) procesory kwantowe muszą być przeprowadzane w temperaturze bliskiej zera bezwzględnego. Ponadto, w celu redukcji błędów konieczne jest stosowanie tak zwanej kwantowej korekcji błędów, która wykorzystuje znaczną część kubitów procesora. Ogranicza to istotnie liczbę kubitów, które faktycznie możemy przeznaczyć do wykonania interesującego nas algorytmu. W konsekwencji, użytecznych (tzw. fault tolerant) komputerów kwantowych, które będą dawały możliwość wykonania operacji niemożliwych do przeprowadzenia na superkomputerach klasycznych możemy się spodziewać za nie wcześniej niż 5 lat. Komputery posiadające łącznie 100 kubitów powstaną wcześniej, jednakże poziom ich błędów będzie wciąć zbyt wysoki, a struktura sprzężeń pomiędzy kubitami zbyt rzadka by mogły one konkurować z klasycznymi maszynami. W drugiej połowie nadchodzącej dekady możemy jednak oczekiwać rozwoju szerokiego spektrum zastosowań komputerów kwantowych. W szczególności,  w kontekście rozwiązywania problemów o dużej złożoności (optymalizacja, łamanie szyfrów, uczenie sztucznych sieci neuronowych, itp.) oraz symulacji układów kwantowych (np. w ramach chemii kwantowej, fizyki materii skondensowanej lub kwantowej grawitacji). Przeprowadzanie na procesorach kwantowych symulacji np. skomplikowanych molekuł znajdzie zastosowanie m.in. przy opracowywaniu leków.  Jako wprowadzenie do zagadnienia programowania komputerów kwantowych zachęcam do lektury moich wcześniejszych wpisów: Elementary quantum computing oraz Kwantowe cienie.

2. Nowe technologie kosmiczne

Globalna branża kosmiczna znajduje się obecnie w fazie transformacji z obszaru dominacji państwowych agencji kosmicznych do rosnącego znaczenia przedsiębiorstw, które zaczynają realizować swoje własne programy kosmiczne. Zjawisko to jest częścią tak zwanego podejścia New Space.  Najbardziej znanymi przykładami są tu Space X, Blue Origin oraz Virgin Galactic. Wszystkie te trzy firmy rozwijają technologie wynoszenia ładunków i

xinglong
Kwantowa dystrybucja klucza pomiędzy satelitą Micius a stacją naziemną. Źródło

osób w ramach lotów suborbitalnych lub orbitalnych. Loty suborbitalne mają duże znaczenie dla otwarcia kosmosu dla turystyki. Dotychczasowe sukcesy trzech wspomnianych firm, dają spore szanse na intensywny rozwój suborbitalnej turystyki kosmicznej w nadchodzącej dekadzie. Z drugiej strony, rozwój prywatnych inicjatyw związanych z lotami orbitalnymi, korzystnie wypłyną na ceny umieszczania ładunków na niskiej orbicie okołoziemskiej. Do tego dochodzi miniaturyzacja systemów satelitarnych, w szczególności w ramach standardu CubeSat – kostek o wymiarach 10x10x10 cm (1U), z których można budować w pełni funkcjonalne nanosatelity. Zbudowanie i umieszczenie na niskiej orbicie okołoziemskiej prostego nanosatelity o rozmiarze 1U można dzisiaj przeprowadzić w ramach budżetu zamykającego się w kwocie 1 mln złotych.   Otwiera to szerokie perspektywy do przeprowadzenia badań w warunkach mikrograwitacyjnych, jak również nowe pole do prowadzenia działalności biznesowej. Najpopularniejsze  dzisiaj obszary tej aktywności dotyczą systemów obserwacji ziemi, łączności oraz nawigacji.  Najbardziej, w mojej opinii, nowatorskim kierunkiem technologicznym, który będzie się w tym kontekście rozwijał jest tak zwana kwantowa łączność satelitarna. Bazuje ona na przesyłaniu pojedynczych fotonów, w których stanach kwantowych zakodowany jest klucz umożliwiający bezpieczne przesyłanie informacji (już za pośrednictwem kanałów klasycznych). Ta tak zwana kwantowa dystrybucja klucza stanowi zasadniczy element internetu kwantowego, który dyskutuję w punkcie 7. Warto tu podkreślić, że kwantowa dystrybucja klucza została pomyślnie przeprowadzona w 2017-tym roku na odległościach międzykontynentalnych, wykorzystując specjalnie do tego zbudowanego satelitę Micius. Obecnie przygotowywanych jest szereg projektów rozwijających tę technologię, opierających się na nanosatelitach w standardzie CubeSat [Ref].

3. Biologia syntetyczna

Komórki już nie tylko muszą robić to do czego zostały wykształcone w toku ewolucji. Dzisiejsza nauka zaczyna umożliwiać nam ich programowanie, tak by realizowały zaplanowane przez nas zadania. Podobnie jak w przypadku programowania komputerów, możemy, wykorzystując komórkowy język programowania (np. SBOL), stworzyć program, wynikiem kompilacji którego jest konkretna sekwencja DNA. Dzięki

eight_col_synth_meat
Syntetyczne mięso. Źródło

rozwiniętym technikom syntezy DNA, możemy dzisiaj bez trudu stworzyć zaprojektowany przez nas materiał genetyczny, po czym dokonać jego mikroiniekcji do wnętrza komórki, wymieniając tym samy jej oryginalny “software”. Metodę tę obecnie rozwija się w przypadku jednokomórkowych organizmów jakimi są bakterie. Pozwala to programować je tak by realizowały określone funkcje np. w bioreaktorach. Kolejnym ważnym przykładem z obszaru biologi syntetycznej jest mięso in vitro. Warto tu zaznaczyć, że około 15 % gazów cieplarnianych (metan) pochodzi od zwierząt. Produkcja mięsa jest obecnie nieefektywna, a wzrost zamożności społeczeństw napędza popyt na produkty mięsne, przyśpieszając negatywne zmiany klimatyczne. Istotny jest również aspekt humanitarny, związany z masowym chowem i ubojem zwierząt. Wprowadzenie syntetycznego mięsa stanowi obiecujące rozwiązanie tych problemów. Warto zauważyć, że w bioreaktorach do produkcji syntetycznego mięsa zastosowanie mogą znaleźć opisane wcześniej programowalne bakterie. Dalsze informacje na temat biologi syntetycznej i tego jak samemu zacząć przygodę z tą dyscypliną można znaleźć np. w książce BioBuilder, której pierwszy rozdział można bezpłatnie przeczytać pod niniejszym linkiem.  

4. Sekwencjonowanie genomu

Materiał genetyczny potrafimy dzisiaj nie tylko syntezować, ale również sekwencjonować, choć jeszcze na początku tego milenium było to zadanie niezwykle ambitne. Zakończony w 2005-tym roku projekt zsekwencjonowania ludzkiego genomu – Human Genome Project pochłonął około trzech miliardów dolarów. Od tego czasu, koszt zsekwencjonowania ludzkiego genomu spada szybciej niż wykładniczo, co widać na

costpergenome2015_4
Koszty pełnego sekwencjonowania genomu ludzkiego. Źródło

załączonym wykresie.  Obecnie, cena zsekwencjonowania pełnego genomu wynosi poniżej kilkuset dolarów. Natomiast, za kwotę około 1000 USD można zakupić własny miniaturowy sekwencer oparty o technologię sekwencjonowania przez nanopory (rozwijane głownie przez firmę Oxford Nanopore Technologies). W przeciągu najbliższej dekady, możemy spodziewać się dalszej redukcji kosztów sekwencjonowania genomu, aż do wartości zapewniającej wręcz bezpłatną (w ramach opieki zdrowotnej) możliwość przeprowadzenia takiej analizy.  Wyzwaniem jest jednak to, jaką użyteczną informację możemy wydobyć z analizy naszego genomu. Niewątpliwie, genom zawiera całe bogactwo danych, jednoznacznie nas identyfikujących, w związku z czym podlegać będzie musiał specjalnym regułom bezpieczeństwa. Przesyłanie takiej informacji pomiędzy ośrodkami medycznymi będzie w przyszłości zabezpieczone przez wprowadzane obecnie algorytmy kryptografii postkwantowej lub też z wykorzystaniem rozwiązań kryptografii kwantowej (wykorzystujące kwantowy internet, dyskutowany w punkcie 7). Niewątpliwie, metody sztucznej inteligencji (dyskutowane w punkcie 6) istotnie przyczynią się do analizy materiału genetycznego i przygotowywania na jego podstawie rekomendacji oraz indywidualnych (spersonalizowanych) terapii. Możemy oczekiwać, że powszechne sekwencjonowanie genomu znacząco przyśpieszy rozwój medycyny personalizowanej, w ramach której np. różne wersje danego leku będą podawane w zależności od profilu genetycznego pacjenta.

5. Biodruk 3D 

Biodruk 3D jest wyłaniającą się nową technologią stawiającą sobie za jeden z głównych celów stworzenie narzędzia umożliwiającego wytwarzanie w sposób sztuczny w pełni funkcjonalnych narządów, mogących stanowić transplanty do przeszczepów. Jest to cel niezwykle ambitny, niemniej jednak postęp jaki dokonał się w przeciągu ostatnich kilku

produkt_dscf8374-white-bg-lighter-blue-x-square
Przykładowa komercyjnie dostępna biodrukarka 3D. Źródło

lat (w ramach którego biodruk 3D ukształtował się jako niezależna dyscyplina naukowa) daje silne podstawy do stwierdzenia, że nie ma fundamentalnych przeszkód dla których cel powyższy nie mógłby zostać ostatecznie osiągnięty. Warto przytoczyć tu, że na chwilę obecną z wykorzystaniem technologii biodruku 3D wytworzono między innymi modele: skóry, tkanki wątroby  czy też (bijącego) organoidu serca. Wytworzone w technologii biodruku 3D transplanty ucha, kości i mięśni przeszły pomyśle testy na myszach i szczurach. Powyższe obiecujące wyniki dały impuls do opracowania rozwiązań i usług w zakresie biodruku 3D oferowanych przez takie firmy jak Organovo (USA),  Aspect Biosystems (Kanada), 3D Bioprinting Solutions (Rosja)  czy Rokit (Korea Południowa). Ważnym wyzwaniem dla biodruku 3D jest wykorzystanie pluripotentnych komórek macierzystych, tak by uzyskać możliwość przygotowania transplantu 3D w oparciu o pobrany od pacjenta wycinek tkanki. Zanim jednak biodruk 3D znajdzie zastosowanie w praktyce klinicznej, będzie najpierw wykorzystywany do przygotowania trójwymiarowych hodowli przeznaczonych do testowania leków oraz np. tworzenia (dyskutowanego w punkcie 3) syntetycznego mięsa. Na zakończenie, pozwolę sobie dodać, że od kilku lat badania nad biodrukiem 3D prowadzimy w ramach Garażu Złożoności na Uniwersytecie Jagiellońskim [Ref]. 

6. Sztuczna inteligencja 

Sztuczna inteligencja o której tak dużo dzisiaj słyszymy to głównie tak zwana “wąska” sztuczna inteligencja (Artificial Narrow Intelligence – ANI) wyspecjalizowana na rozwiązywaniu konkretnego typu problemów. Na przykład, ANI potrafi rozpoznawać obrazy  lub też wygrywać z mistrzami gry w go. Zastosowań ANI jest obecnie na prawdę dużo. ANI opiera się głównie na tak zwanych głębokich sztucznych sieciach

intel-neuromorphic-chip-loihi-2
Neuromorficzny procesor Loihi firmy Intel. Źródło

neuronowych (ang. deep learning), których struktura inspirowana jest budową kory mózgowej. Warto tu dodać, że złożony proces uczenia sieci neuronowych może zostać wsparty przez komputery kwantowe (dyskutowane w punkcie ). Nadchodząca dekada przyniesie niewątpliwie nie tylko lawinę nowych zastosowań ANI ale również nastąpi znaczący postęp w kierunku stworzenia tak zwanej ogólnej sztucznej inteligencji (Artificial General Intelligence – AGI). AGI definiuje się jako typ sztucznej inteligencji odpowiadającej zdolnościom umysłowym człowieka.  Rozważa się obecnie kilka dróg do utworzenia AGI. Osobiście, za najbardziej obiecującą (i już najbardziej zaawansowaną)  drogę do osiągnięcia AGI uważam symulacje ludzkiego mózgu. Badania zmierzające w tym kierunku prowadzone są m.in. w ramach flagowego projektu Komisji Europejskiej Human Brain Project (HBP).  Symulacje te napotykają na szereg problemów natury technicznej. Jednym z obiecujących możliwości ich przezwyciężenia i  szybszego przybliżenia nas do AGI są  procesory neuromorficzne. Procesory takie już na poziomie swojej architektury odwzorowują strukturę połączeń neuronalnych, co znacznie ułatwia prowadzenie symulacji. Przykładem takiego procesora jest chip Loihi zbudowany przez firmę Intel.  Zawiera on 130 000 sztucznych neuronów oraz 130 milionów synaps. Architekturę neuromorficzną wykorzystuje się również w niedawno uruchomionym superkomputerze SpiNNaker, działającym w ramach projektu HBP. Do przeprowadzenia symulacji systemów neuronalnych nie wystarczy jednak sam software i hardware. Potrzebne są  również dane wejściowe do przeprowadzenia symulacji, lub mówiąc precyzyjniej emulacji mózgu. Należy je pozyskać z inwazyjnego lub bezinwazyjnego obrazowania mózgu. W szczególności, obiecująca jest inwazyjna metoda oparta o tzw. Serial Section Electron Microscopy. Z jej pomocą, uzyskano niedawno kompletny konektom mózgu małej rybki o nazwie Danio pręgowany [Ref]. Zobrazowanie tą metodą i zrekonstruowania konektomu jednego milimetra sześciennego tkanki mózgowej stawia sobie za cel, rozpoczęty w 2016-tym roku,  projekt MICrONS. Patrząc bardziej w przyszłość, osiągnięcie AGI, otworzy drogę do tak zwanej superinteligencji (Artificial Super Intelligence – ASI), przekraczającej ludzkie możliwości umysłowe.

7. Internet kwantowy 

Internet kwantowy to hipotetyczna globalna sieć kwantowa (ang. quantum network), która pozwoli w przyszłości na wymianę informacji kwantowej, w szczególności pomiędzy komputerami kwantowymi (o których pisałem w punkcie 1 ). Czym faktycznie okaże się kwantowy internet i jakie będzie jego znaczenie, tego jeszcze nie wiemy. Pierwszym zaś etapem jego tworzenia, rozwijanym obecnie, jest kwantowa dystrybucja klucza (KDK).  Kwantowa dystrybucja klucza jest,

qkd_product_small
Zestaw do kwantowej dystrybucji klucza. Źródło

rozważaną w ramach kryptografii kwantowej  metodą bezpiecznego przesyłania klucza za pośrednictwem stanów kwantowych pojedynczych fotonów. Metoda ta wykorzystuje własności mechaniki kwantowej (w szczególności tak zwane twierdzenie o zakazie klonowania) do przesyłania klucza, który zostanie później wykorzystany do zaszyfrowania i odszyfrowania przesyłanej już przez kanał klasyczny informacji.  Kwantowa dystrybucja klucza jest rozwiązaniem,  które zostało wdrożone do komercyjnego użytku.  Na zdjęciu powyżej można zobaczyć przykładowy zestaw do KDK. Dostępne jednakże obecnie rozwiązania posiadają jedno kluczowe ograniczenie. Mianowicie, jest to dystans, na który możemy przesłać zabezpieczoną kwantowo informację. Wiąże się to z tłumieniem fotonów w światłowodzie i koniecznością stosowania skomplikowanych tzw. powielaczy kwantowych. Obiecującym rozwiązaniem tego problemu jest przesyłanie fotonów z zakodowaną informacją kwantową poprzez atmosferę oraz przestrzeń kosmiczną. Udane próby interkontynentalnej KDK z wykorzystaniem kwantowych technologii satelitarnych udało się przeprowadzić w 2017-tym roku, co dyskutuję we wpisie Kwantowa łączność satelitarna. Obecnie trwają prace nad kilkoma projektami satelitarnymi które mają na celu rozwój kwantowych technologii związanych z łącznością satelitarną. Stworzenie podwalin dla internetu kwantowego to również jeden z filarów, rozpisanego na okres dziesięciu lat (2018-2028), flagowego programu Komisji Europejskiej Quantum Flagship.

8. Nowa energetyka jądrowa 

Technologiczny rozwój naszej cywilizacji wymaga coraz większej ilości energii. Popyt ten jest dzisiaj wciąż w dużej mierze zaspokajany przez paliwa kopane, spalanie których niesie jednak negatywne skutki dla jakości powietrza oraz prowadzi do zmian klimatycznych. Odnawialne źródła energii takie jak fotowoltaika i farmy wiatrowe dostarczają jedynie częściowego rozwiązania tego problemu. Przeszkodą w ich rozwoju jest problem magazynowania energii, który jednakże może być w dużym stopniu

41809720041_48b2f2d53f_b
Plac budowy reaktora termojądrowego ITER. Źródło

przezwyciężony stosując takie rozwiązania jak systemy power-to-gas czy też poprzez redukcję strat na przesyle energii na duże odległości (np. stosując w przyszłości nadprzewodzące sieci transmisyjne). Duże nadzieje związane z zapewnieniem stabilnego źródła energii (zarówno elektrycznej jak i cieplnej) niosą nowe rozwiązania w obszarze energetyki jądrowej. Wymarzonym źródłem energii jest kontrolowana reakcja syntezy (fuzji) termojądrowej.  Obecnie we francuskiej Prowansji trwa budowa eksperymentalnego reaktora ITER, mającego rozpocząć pierwsze eksperymenty z plazmą w połowie nadchodzącej dekady. Do 2035-tego roku planowane jest natomiast osiągnięcie generacji mocy rzędu 1GW (tyle samo co w typowym bloku elektrowni) i samo-podtrzymywanie plazmy przez nawet 1000 sekund. Jeśli projekt zostanie zwieńczony sukcesem, na jego kanwie ma zostać uruchomiony (prawdopodobnie w latach 2050-2060) pierwszy komercyjny blok termojądrowy o nazwie DEMO. Są to jednak odległe perspektywy. Dużo realniejsze w nadchodzącej dekadzie może natomiast stać się wykorzystanie nowych typów reaktorów bazujących nie na syntezie lecz na, stosowanym obecnie w elektrowniach atomowych, rozpadzie jądrowym.  Chodzi mianowicie o tak zwane reaktory jądrowe IV generacji, których bardzo obiecującym  przykładem (w perspektywie najbliższej dekady) jest reaktor wysokotemperaturowy chłodzony gazem (HTRG – High Temperature Gas-cooled Reactor).   Reaktory HTRG pozwalają na bezpieczną i bezemisyjną generację dużych ilości ciepła, znajdującego zastosowanie w przemyśle ciężkim, np. do wytopu żelaza. Ponadto, odbiorcą ciepła może być proces wytwarzania wodoru do zasilania ogniw paliwowych znajdujących zastosowanie w elektromobilności, dyskutowanej w punkcie 9. W przeciwieństwie do standardowych elektrowni jądrowych, reaktory HTRG o mocy rzędu 200 MW mają konstrukcję modułową i można je w znacznym stopniu budować w fabryce po czym integrować w miejscu przeznaczenia (np. na terenie huty).

9. Elektromobilność 

Samochody elektryczne przez wiele lat wydawały się mrzonką. Powstające prototypy były raczej ciekawostką i mało kto na poważnie brał pod uwagę możliwość tego, że za jego życia elektrycznie napędzane samochody zaczną królować na drogach i sama/sam zasiądzie za kierownicą jednego z nich. Wszystko jednak zmieniło się w przeciągu  kilku ostatnich lat,

www.helgilibrary
Prognoza rocznej sprzedaży aut elektrycznych. Źródło

głównie za sprawą pojazdów firmy Tesla.  W samym 2018-tym sprzedaż samochodów elektrycznych w USA zanotowała wzrost na poziomie 81 %, osiągając 2.1 % procent rynku samochodów w tym kraju. Globalny udział samochodów elektrycznych na koniec 2018-tego roku to zaś już 4.6%. Najwięcej z nich sprzedaje się w Chinach, gdzie liczba ta przekroczyła już roczną sprzedaż miliona sztuk. Jak wskazuje raport z 2016-tego roku, przygotowany przez Helgi Library, do końca 2030-tego roku około 20% sprzedawanych samochodów będą stanowiły samochody elektryczne. Będzie się to przekładało na sprzedaż około 20 milionów sztuk rocznie.  Otrzymane jednak w latach 2017-2018 wzrosty przewyższają prognozy na te lata. W konsekwencji, jak wskazują aktualniejsze analizy, poziom 20% w USA może zostać osiągnięty już w 2025-tym roku. Kluczowym czynnikiem który zadecyduje o adaptacji samochodów elektrycznych będzie ich cena. Od strony osiągów, samochody te już nie tylko dorównują tym konwencjonalnym, a wręcz w wielu aspektach są od nich lepsze (np. przyśpieszenie). Cena  w dużym stopniu uzależniona jest od kosztów baterii. Technologa która jest tu głównie stosowana to akumulatory litowo-jonowe (Li-Ion). Sztandarowy produkt Tesli Model S w wersji o pojemności 85kWh posiada matrycę 7104 akumulatorów o rozmiarach nieco większych od bateria AA każdy.  Rosnący popyt na akumulatory litowo-jonowe mają zaspokoić, między innymi, powstające giga fabryki (Gigafacory).  Ich pracę mogą jednak zakłócić ceny kluczowych do wytworzenie akumulatorów Li-Ion pierwiastków – litu i kobaltu. Notowania tych surowców odnotowały w ostatnich latach bardzo dynamiczny wzrost. Jednak baterie do samochodów to nie tylko problem kosztów ich wytworzenia, ale również ich recyklingu. Alternatywą dla akumulatorów mogą zaś okazać się ogniwa wodorowe. Z pewnością, rozwój elektromobilności dokona rewolucji rynku samochodowego oraz takich obszarów jak serwisowanie pojazdów. Warte podkreślenia jest to, że równolegle do rozwoju elektromobilności opracowywane i wdrażane są rozwiązania związane z autonomicznością pojazdów (oparte m.in. o wąską sztuczną inteligencję, dyskutowaną w punkcie 6 oraz nawigację satelitarną – punkt 2).   Połączenie tych dwóch elementów dokona w nadchodzącej dekadzie transformacji motoryzacji, a nazwa “samochód” nabierze nowego znaczenia.  Rosnąca rola bezemisyjnych samochodów elektrycznych będzie miała istotne znaczenie dla ograniczenia emisji gazów cieplarnianych i zanieczyszczeń do atmosfery.

10. Kolej próżniowa 

W sierpniu 2013-tego roku grupa inżynierów z firm Tesla i SpaceX, pod kierownictwem Elona Muska, przedstawiła koncepcję nowego środka transportu, określonego mianem hyperloop.  Założenia stojące za tym rozwiązaniem oraz  wstępne studium wykonalności  zawarto w raporcie Hyperloop Alpha.   Idea hyperloop polega na transporcie kapsuły (z pasażerami lub towarami) w rurze z obniżonym ciśnieniem, co ma na celu

image_04
Testowa linia kolei próżniowej firmy Hyperloop One. Źródło

zredukowanie oporu aerodynamicznego. Zakłada się, że kapsuła mogłaby poruszać się z prędkościami osiągającymi prędkości dźwięku, co stanowiłoby realną konkurencję dla komunikacji lotniczej na odległościach subkontynentalnych. Niezwykle ważne jest również to, że hyperloop wykorzystując jedynie energię elektryczną jest rozwiązaniem bezemisyjnym. Jego rozwój, jako alternatywy dla nieekologicznego ruchu lotniczego, jest więc ważny z punktu widzenia ograniczania emisji dwutlenku węgla do atmosfery.  Nad wdrożeniem technologii hyperloop pracuje obecnie kilka firm, wśród których wiodącą rolę odgrywają Hyperloop One i Hyperloop Transportation Technologies. W Polsce ideę hyperloop rozwija startup Hyperloop Poland. Wdrożenie hyperloop jako środka transportu stawia szereg wyzwań zarówno natury inżynieryjnej jak i ekonomicznej. Problemem technicznym jest, w szczególności, kwestia kompresji powietrza w przedniej części kapsuły i związany z tym wzrost ciśnienia, hamujący ruch samej kapsuły. Efekt ten zaczyna być szczególnie dokuczliwy gdy prędkość kapsuły osiąga prędkość dźwięku, uniemożliwiając cząsteczkom powietrza opływ kapsuły poprzez obszar pomiędzy wewnętrzną powierzchnią rury, a powierzchnią kapsuły.  Zjawisko to wiąże się z istnieniem tak zwanej granica Kantrowitza (ang. Kantrowitz limit), która zadaje maksymalną prędkość z jaką może poruszać się obiekt dla określonego stosunku przekroju tego obiektu względem przekroju poprzecznego rury.  Rozwiązaniem problemu wzrostu ciśnienia powietrza w przedniej części kapsuły jest zastosowania kompresora, który odpompowuje nadmiar powietrza do tylnej części kapsuły. Rozwiązanie takie ma jeszcze jedną zaletę; mianowicie, odprowadzane powietrze może zostać użyte do utrzymania kapsuły na wytworzonej poduszce powietrznej, jak w przypadku poduszkowca. Zastosowanie lewitacji (w tym przypadku ciśnieniowej) jest kluczowe do zredukowania tarcia pomiędzy kapsułą, a tubą. Alternatywnie, rozważane jest zastosowanie lewitacji magnetycznej, jak np. w szanghajskim Maglevie. Wykorzystanie takiego rozwiązania jest jednak dużo kosztowniejsze i wymaga większego zasilania (chyba, że zastosowane zostaną magnesy stałe).  Budowa od podstaw infrastruktury Hyperloop to ogromne wyzwanie ekonomiczne i planistyczne, jednakże już dzisiaj zapadają pierwsze decyzje dotyczące planów budowy instalacji kolei próżniowej.

11. Lab-on-a-chip

Wykonując ilościowe badania mikrobiologiczne standardowymi metodami musimy liczyć się z tym że, na ich wyniki będziemy musieli czekać przynajmniej 24 godziny, a w przypadku niektórych patogenów (np. grzyby) nawet kilka-kilkanaście dni. Wynika to z faktu, iż dla klasycznych posiewów na szalce Petriego należy inkubować kolonie komórkowe do czasu aż osiągną one makroskopowe rozmiary, pozwalające na zliczenie ich liczby gołym okiem. Ta skrajnie archaiczna metoda, nie przystająca do współczesnych realiów, jest jednak wciąż najpowszechniejszym sposobem analizy mikrobiologicznej zarówno w  diagnostyce medycznej jaki i w przemyśle spożywczym, farmaceutycznym i kosmetycznym. Sytuacja ta ma jednak szansę ulec zmianie za sprawą rozwiązań typu lab-on-a-chip, czyli miniaturowych systemów analitycznych. Układy tego typu mogą np. wykrywać i zliczać pojedyncze bakterie, eliminując konieczność długotrwałego oczekiwania na wyniki

shutterstock_311155133-1068x601
Przykład mikrofluidycznego układu lab-on-a-chip. Źródło

badań mikrobiologicznych (wymagających odczekania kilkunastu/kilkudziesięciu cykli podziałów komórek).  Układy lab-on-a-chip zazwyczaj wykorzystują rozwiązania mikroprzepływowe (tzw. układy mikrofluidyczne) pozwalające na przeprowadzanie reakcji chemicznych czy też biochemicznych, operując na objętościach płynów rzędu mikro litrów lub mniejszych. Układy tego typu wykonuje się zazwyczaj metodami litograficznymi w płytce ze szkła akrylowego (zdjęcie powyżej). Szczególną klasą systemów mikroprzepływowych są modele organów tzw. organ-on-a-chip. Przykładu rozwiązania lab-on-a-chip dostarczają również miniaturowe układy do sekwencjonowania DNA, wspomniane w punkcie 4. Miniaturyzacja i obniżenie kosztu układów diagnostycznych doprowadzi do ich szerokiego rozpowszechnienia. Będzie to miało duże znaczenie dla podniesienia poziomu diagnostyki medycznej w rozwijających się rejonach świata. Układy lab-on-a-chip  nie tylko (jako np. przystawki do smartfonów) trafią do naszych domów ale również umożliwią prowadzenie badań biomedycznych w warunkach kosmicznych, co już ma miejsce. Połączenie rozwiązań nanosatelitarnych (dyskutowanych w punkcie 2) z układami  lab-on-a-chip  może, w szczególności, dostarczyć metody opracowywania leków dedykowanych dla przyszłych kosmicznych eksploratorów [Ref].

12. Blockchain 

Blockchain to rozproszona baza danych (księga rachunkowa) nie posiadająca centralnej jednostki autoryzującej. Pomimo, że koncepcja ta była znana już wcześniej, szerokie zastosowanie znalazła dzięki kryptowalucie Bitcoin, której założenia zostały przedstawione w 2009-tym roku w pracy Bitcoin: A Peer-to-Peer Electronic Cash System. Wprowadzenie Bitcoina pociągnęło za sobą utworzenie wielu konkurencyjnych kryptowalut, których (na giełdach kryptowalut) notowanych jest już kilka tysięcy.  Funkcjonowanie Blockchainu wymaga zastosowania szeregu rozwiązań kryptograficznych, zapewniających poprawne funkcjonowanie systemu. Są to zarówno

untitled-design
Popularne kryptowaluty oparte o technologię Blockchain. Źródło

podpis elektroniczny, wykorzystywany do uwierzytelniania transakcji,  jak i funkcje haszujące mające zastosowanie do tworzenia adresów bloków oraz w procesie tzw. kopania (mining). Kopanie jest związane z metodą nagradzania osób, które angażują się w podtrzymywanie Blockchainu, co jest niezbędne do jego funkcjonowania. W przypadku Bitcoina,  stosowana jest funkcja haszująca SHA-256, która jest bardzo powszechnie wykorzystywana w zabezpieczaniu np. wymiany informacji w internecie (kliknij na kłódkę w przeglądarce w pasku adresu tej strony i zwróć uwagę na szczegóły certyfikatu TLS). Proces kopania, czyli poszukiwania rozwiązania zadania opartego o przeszukiwanie dziedziny funkcji haszującej, jest jednak zadaniem bardzo żmudnym i wymagającym ogromnych mocy obliczeniowych. Tylko w przypadku Bitcoina (jak wskazuje Bitcoin Energy Consumption Index) roczna konsumpcja energii elektrycznej wynosi około 50 TWh, co przekłada się na średnią pobieraną moc 5,7 GW. Jest to porównywalne z mocą pięciu elektrowni atomowych lub całkowitym zapotrzebowaniem na energię elektryczną Singapuru. Ponieważ energia ta pochodzi jednak w głównej mierze z elektrowni węglowych, tak duża konsumpcja energii rodzi obawy związane z emisją dwutlenku węgla i jego negatywnego wpływu na klimat [Ref].  Problem ten będzie musiał znaleźć rozwiązanie w przyszłych implementacjach technologii Blockchain. Kolejnym problemem, jaki stoi przed stabilnością rozwiązań opartych o Blockchain jest kwestia podatności na ataki na wykorzystane rozwiązania kryptograficzne. Kwestię tę dyskutuję dokładniej we wpisie Kryptowaluty-Kwanty-Kosmos. Rzecz mianowicie dotyczy nowych możliwości zarówno rekonstrukcji kluczy prywatnych (w tzw. kryptografii asymetrycznej) jak i przeszukiwania dziedzin funkcji haszujących, jakich dostarczą komputery kwantowe, dyskutowane w punkcie 1.  Przyszłe implementacje Blockchainu będą wymagały zastosowania klasycznych algorytmów kryptograficznych nie podatnych na ataki kwantowe. Algorytmy takie są dzisiaj opracowywane w ramach tak zwanej kryptografii postkwantowej.  Ponadto, rozwój internetu kwantowego (dyskutowanego w punkcie 7) pozwoli na wprowadzenie Blockchainu opartego o kwantową dystrybucję klucza. Prace nad kwantowo zabezpieczoną wersją Blockchainu są już obecnie prowadzone [Ref]. Warto na koniec podkreślić, że Blockchain ma zastosowanie nie tylko w obszarze finansowym. Do przyszłych pól implementacji tej technologii możemy zaliczyć m.in.: przechowywanie danych medycznych, ubezpieczenia, zarządzanie infrastrukturą IoT, elektroniczne zawieranie umów, księgi wieczyste, kontrola nad prawami do utworów artystycznych oraz zarządzanie łańcuchami dostaw.

© Jakub Mielczarek